Langfristiger Forschungsplan (LFP) 2017-2020

Forschungskonzept armasuisse mit Forschungsschwerpunkten und prioritären Themen

www.sicherheitsforschung.ch
Inhaltsverzeichnis

Vorwort ... 4
Zusammenfassung ... 5

1 Einleitung .. 7

2 Überblick Politikbereich ... 11
 2.1 Stand der Forschung und Kontext .. 12
 2.2 Positionierung der Forschung im Amt ... 13
 2.3 Gesetzlicher Auftrag und Grundlagen ... 20
 2.4 Rückblick auf Periode 2012-2016 ... 22
 2.5 Finanzierung .. 23
 2.6 Herausforderungen und Handlungsbedarf ... 24

3 Forschungsschwerpunkte und prioritäre Themen 2017-2020 25
 3.1 Technologien für operationelle Fähigkeiten: Informationsüberlegenheit 26
 3.1.1 Veranlassung und Nutzen ... 26
 3.1.2 Mehrwert der Forschungsresultate .. 33
 3.1.3 Zielsetzungen .. 34
 3.1.4 Potenzielle Partner – Internationale Zusammenarbeit 39
 3.2 Technologien für operationelle Fähigkeiten: Wirkung und Schutz 41
 3.2.1 Veranlassung und Nutzen ... 41
 3.2.2 Mehrwert der Forschungsresultate .. 45
 3.2.3 Zielsetzungen .. 46
 3.2.4 Potenzielle Partner – Internationale Zusammenarbeit 50
 3.3 Technologienintegration für Einsatzsysteme: Unbemannte Mobile Plattformen 52
 3.3.1 Veranlassung und Nutzen ... 52
 3.3.2 Mehrwert der Forschungsresultate .. 55
 3.3.3 Zielsetzungen .. 56
 3.3.4 Potenzielle Partner – Internationale Zusammenarbeit 57
 3.4 Innovation und Querschnittsthemen: Technologiefrüherkennung und
 Technologie-Monitoring ... 59
 3.4.1 Veranlassung und Nutzen ... 59
 3.4.2 Mehrwert der Forschungsresultate .. 61
 3.4.3 Zielsetzungen .. 61
 3.4.4 Potenzielle Partner – Internationale Zusammenarbeit 63
3.5 Innovation und Querschnittsthemen: Komplexität und Human Factors

- **3.5.1 Veranlassung und Nutzen** .. 64
- **3.5.2 Mehrwert der Forschungsresultate** ... 66
- **3.5.3 Zielsetzungen** ... 67
- **3.5.4 Potenzielle Partner – Internationale Zusammenarbeit** 69

3.6 Innovation und Querschnittsthemen: Materialwissenschaft und Energie

- **3.6.1 Veranlassung und Nutzen** .. 70
- **3.6.2 Mehrwert der Forschungsresultate** ... 71
- **3.6.3 Zielsetzungen** ... 72
- **3.6.4 Potenzielle Partner – Internationale Zusammenarbeit** 74

4 Finanzierung 2017 – 2020

- **4.1 Folgen der Umsetzung der Sparmassnahmen im Rahmen KAP 2014** 75

5 Akteure und Schnittstellen

- **5.1 Beschreibung der wichtigsten Akteure** 76
- **5.2 Schnittstellen zu anderen Bundesämtern** 76
- **5.3 Internationale Zusammenarbeit** .. 77

6 Organisation und Qualitätssicherung

- **6.1 Interne Organisation** .. 78
- **6.2 Externe Beratung durch die wissenschaftliche Begleitkommission** 79
- **6.3 Qualitätssicherung (Ziele neue Periode)** 79
- **6.4 Verbreitung des Wissens** ... 81

Anhang

- **Anhang 1: Abkürzungsverzeichnis** .. 82
- **Anhang 2: Ressortforschung des Bundes** 85
 - Definition der Forschung der Bundesverwaltung 85
 - Gesetzlicher Auftrag .. 86
 - Koordination der Forschung der Bundesverwaltung 87
 - Übergeordnete Ziele in der Periode 2017-2020 90
- **Anhang 3: Wissenschaftliche Begleitkommission** 91
- **Anhang 4: Gremien** .. 91
Vorwort

Der langfristige Forschungsplan (LFP 2017-2020) legt die strategische Vorgehensweise und die Forschungsschwerpunkte fest. Diese orientieren sich an den sicherheitspolitischen Anforderungen, den Aufträgen und dem Leistungsprofil der Armee, sowie an der Teilstrategie Technologie V 2020, am Masterplan Streitkräfte- und Unternehmensentwicklung der Schweizer Armee und an weiteren forschungsrelevanten Vorgaben.

armasuisse
Der Rüstungschef

Martin Sonderegger
Zusammenfassung

- **Anwenderorientierung**: Ergebnisse von zukünftigen Forschungsaktivitäten müssen primär für die Auftragserfüllung der Departementsbereiche Verteidigung und armasuisse genutzt werden können. Aus diesem Grund werden die Forschungsschwerpunkte weitgehend auf die Aufgaben und operationellen Fähigkeiten der Armee, basierend auf dem Masterplanprozess und der Teilstrategie Technologie V, ausgerichtet.

- **Kompetenzen durch Kooperationen**: Um technisch-wissenschaftliche Kompetenzen für die Instrumente der Sicherheitspolitik bereitzustellen, müssen aufgrund der Komplexität bei der Aufgabenumsetzung und den wirtschaftlichen Rahmenbedingungen alle relevanten Akteure zusammenarbeiten. Der langfristig gestaltete Netzwerkaufbau und die Netzwerkpflege werden daher weiterhin gefördert, um die benötigte und zum Teil bereits vorhandene Kompetenzbasis mit Partnern aus der Wirtschaft, der Wissenschaft, anderen staatlichen Einrichtungen und internationalen Organisationen (z.B. EDA, NATO/PIP) optimal nutzen zu können.

- **Mittel- bis langfristiger Zeitfokus**: Die Forschung legt die Grundlage für den Aufbau von technisch-wissenschaftlichen Kompetenzen, die in Zukunft benötigt werden. Verschiedene Technologien haben unterschiedlich lange Lebenszyklen, was sich auf den zeitlichen Betrachtungsfokus auswirkt. Daher müssen Substitutionstechnologien rechtzeitig erkannt werden, um Chancen und Risiken bei der Integration in bestehende Systeme oder Systemlandschaften beurteilen zu können. Wichtig ist aber auch das systematische und frühzeitige Erkennen sicherheitsrelevanter Technologietrends und technologiebasierten Bedrohungsentwicklungen in Form eines langfristig ausgelegten Technologiemonitors.

- **Technologiebereitschaftsgrad**: Um einen möglichst effizienten Ressourceneinsatz zu gewährleisten orientiert sich die Bearbeitungstiefe der Forschungsaktivitäten an der Reife von Technologien. Interessant werden Technologien für die Forschung, sobald die Anwendung einer Technologie beschrieben vorliegt und der Nachweis ihrer Funktionstüchtigkeit im Umfeld von Sicherheitskräften zu erbringen ist. Diese Leistungen können mit einem moderaten Ressourceneinsatz erbracht werden. Mit zu-

- **Interdisziplinäre Vernetzung**: Der fähigkeitsorientierte Bezug der Forschung armasuisse erfordert eine interdisziplinäre Bearbeitung der Themen. Auch Themen, welche im sicherheitspolitischen Gesamtkontext betrachtet werden müssen oder mehreren fähigkeitsorientierten Forschungsthemen zugeordnet werden können, sind nicht zu vernachlässigen. Expertenwissen in diesen Bereichen ermöglicht die Qualität und die Leistung von Systemen massgeblich zu erhöhen und zusätzlich ein erhebliches Potenzial zur Optimierung von Kosten und Nutzen auszuschöpfen.

Vor diesem Hintergrund wurden die Forschungsschwerpunkte und prioritären Themen des LFP 2017-2020 definiert (Abbildung 7). In den nächsten vier Jahren stehen folgende wichtige Themenfelder im Fokus der Forschung:

- Informationsüberlegenheit mit Bezug auf die Fähigkeitsbereiche Führung und Nachrichtendienst und den Themenbereichen Aufklärung und Überwachung, Kommunikation, Cyberspace und Informationsmanagement;
- Wirkung und Schutz, wobei der Schutz des Menschen im Vordergrund steht und Wirkung als Begriff für die Gesamtheit aller leitalen und nicht-leitalen Instrumente und Mittel steht, mit deren Hilfe sicherheits- und verteidigungsrelevante Absichten bzw. Ziele mit der gewünschten Verhältnismäßigkeit erreicht werden können;
- Technologieintegration für Einsatzsysteme: Unbemannte mobile Plattformen mit entsprechenden Fähigkeitsanforderungen der Streit- und der Sicherheitskräfte in den relevanten Operationsräumen;
1 Einleitung

Forschung der Bundesverwaltung an den Prinzipien der Gesetzmäßigkeit, Zweckmäßigkeit, Wirksamkeit und Wirtschaftlichkeit orientiert.

Wissenschaft und Forschung ist für die Bereitstellung der Grundlagen und Sicherstellung der technisch-wissenschaftlichen Kompetenzen zur Identifizierung von aktuellen und künftigen sicherheitspolitischen Anforderungen und für die daraus abgeleitete adäquate Aufgabenbewältigung unerlässlich.

Das vorliegende Forschungskonzept legt in Form des Langfristigen Forschungsplans (LFP) für die Forschung armasuisse die entsprechenden strategischen Leitlinien fest und definiert die Forschungsschwerpunkte und prioritären Themen für einen Zeitraum von vier Jahren.
Dabei wurde die stete Entwicklung des Umfelds berücksichtigt und die inhaltliche Ausrichtung angepasst.

Die Ableitung der Forschungsschwerpunkte und prioritären Themen basiert auf einem Prozess, der die relevanten Entwicklungstrends des Umfelds, die sicherheitspolitischen Anforderungen mit den daraus abgeleiteten Fähigkeitsprofilen und Massnahmen, wie auch den Beitrag der Forschungsaktivitäten zur Bereitstellung der benötigten technisch-wissenschaftlichen Kompetenzen berücksichtigt.

Abbildung 1: Vorgehensmodell für die Ableitung der Forschungsstrategie und der Forschungsschwerpunkte im Rahmen des Forschungskonzepts 2017-2020 mit der Zielsetzung die technisch-wissenschaftlichen Kompetenzen für künftige Beratungs- und Expertisefähigkeit im Rahmen der Doktrinentwicklungs-, Planungs- und Evaluationsprozesse sicherzustellen.

vitäten zu vertiefen. Das sicherheits- und verteidigungsrelevante Anwendungspotenzial vieler Technologiebereiche ist zweifellos vorhanden, jedoch in seiner genauen Ausprägung nicht ohne weiteres ersichtlich. Daher definiert das Forschungskonzept 2017-2020 im Forschungsschwerpunkt „Innovation und Querschnittsthemen“ mehrere prioritäre Themen, die noch keinen direkt ersichtlichen Bezug zu den operationellen Fähigkeiten der Armee aufweisen, sehr wohl aber das Potenzial haben, diese nachhaltig zu beeinflussen.
2 Überblick Politikbereich

In der Verordnung des VBS über das Armeematerial wird die armasuisse als interne Auftragnehmerin und zentrale Beschaffungsstelle bezeichnet, welche die notwendigen kommerziellen und technischen Kompetenzen für den Prozess der materiellen Sicherstellung der Armee bereitstellt. Zudem hat armasuisse das technische Fachwissen für das Armeematerial.

5 Verordnung des VBS über das Armeematerial, SR 514.20 (2011)

2.1 Stand der Forschung und Kontext

6 Jahresreporting FLAG, armasuisse Wissenschaft und Technologie (2014)
2.2 Positionierung der Forschung im Amt

Abbildung 2: Ableitung der strategischen Forschungsleitlinien als Basis für die Festlegung der Forschungsschwerpunkte und der prioritären Themen

Diesen werden durch die Armeeplanung Prioritäten entlang einer vierstufigen Skala zugeordnet, welche von keiner Befähigung über Minimalbefähigung und Teilbefähigung bis zur Vollbefähigung reichen. Basis für die Prioritätensetzung ist einerseits die benötigte Zeit für den Aufbau einer Fähigkeit und andererseits die Vorwarnzeit, während der eine Fähigkeit für den operativen Einsatz zu erlangen ist. Die Priorisierung der operationellen Fähigkeiten definiert den Ausrüstungsbedarf der Armee und gewichtet damit auch die benötigten Techno-
logien. Die Armee muss ferner in der Lage sein, ihre Aufgaben (Verteidigung, Unterstützung ziviler Behörden und Friedensförderung) und die dafür benötigten operationellen Fähigkeiten in jeder Operationssphäre ausüben zu können.

Die Forschung armasuisse verfolgt das Hauptziel, diejenigen technisch-wissenschaftlichen Kompetenzen bereitzustellen, welche benötigt werden, um die Entscheidungsträger der Armee in Technologiefragen zu beraten, die Expertise- und Erprobungsfähigkeit entlang des Rüstungsablaufs sicherzustellen sowie Technologieentwicklungen und deren Einfluss auf die operationellen Fähigkeiten der Armee im Sinne einer Früherkennung aufzuzeigen und zu bewerten. Um Chancen und Risiken technischer Innovationen zu bewerten, soll auch in Zukunft mit Hilfe von Technologiedemonstratoren das Potenzial neuer Technologien in einsatzähnlichen Situationen aufgezeigt werden.

Folgende strategische Leitlinien sind für die Festlegung der Forschungsschwerpunkte und deren prioritäre Themenbereiche des Forschungskonzepts 2017-2020 von zentraler Bedeutung:

Anwenderorientierung

Auch die Ressortforschung muss den Kriterien Effektivität und Effizienz genügen. Für die Forschungsplanung bedeutet dies, Forschungsschwerpunkte so festzulegen, dass deren Ergebnisse einerseits für die unterschiedlichen Aufgaben der Armee und deren Support-Organisationen wirksam anwendbar sind und andererseits eine Steigerung der Effizienz in der Aufgabenerfüllung der Armee ermöglichen.

\[\begin{array}{|c|c|c|c|c|c|c|}
\hline
\text{Forschungsschwerpunkt} & \text{Prioritares Forschungsthema} & \text{Fähigkeitsbereiche gemäß Militärdoktrin 17} \\
\hline
\text{Technologie für operationelle Fähigkeiten} & \text{Informationsüberlegenheit} & \text{Führung} & \text{Nachrichtendienst} & \text{Wirksamkeit im Einsatz} & \text{Mobilität} & \text{Schutz eigener Kräfte} & \text{Unterstützung und Durchhaltefähigkeit} \\
\text{Wirkung und Schutz} & \text{Technologieintegraion für Einsatzsysteme} & \text{Unbemannte mobile Plattformen} & \text{Technologiefrüherkennung, Komplexitätsmanagement, Materialwissenschaften, Soziotechnische Faktoren} \\
\hline
\end{array}\]

\(^7\) z.B. CD&E: Concept Development and Experimentation

\[\text{Abbildung 3: Geplante Forschungsschwerpunkte und deren prioritäre Themenbereiche 2017-2020 und ihre Bedeutung für die zukünftigen Fähigkeitsbereiche der Armee.}\]
land. Im Vordergrund steht deshalb die Forschungsausrichtung auf technisch-wissenschaftliche Kompetenzen, welche möglichst mehrere sicherheitspolitische Interessen abdecken, um damit auch eine gesamtstaatliche Wahrnehmung moderner Sicherheitsaufgaben zu fördern. Dies erlaubt die mehrfache Nutzung der erarbeiteten Kompetenzen und Erkenntnisse durch verschiedene sicherheitspolitische Akteure.

Für die optimale Unterstützung der Einsatzkräfte und deren Fähigkeiten ist eine entsprechende planerische Flexibilität für die Ausrichtung auf das lagespezifische Risikobild zu gewährleisten. Deshalb muss auch die Forschungsplanung die erforderliche Flexibilität sicherstellen, um auf Ereignisse, veränderte Situationen oder neue Erkenntnisse aus der Früherkennung mit einer Neuausrichtung der Forschungsaktivitäten innerhalb bestehender Führungsschwerpunkte reagieren zu können. Eine rollende Bedarfsermittlung stellt sicher, dass auf der Basis einer stabilen mittelfristigen Planung jährlich Anpassungen vorgenommen werden können, um erkannte Potenziale und neue Benutzeranforderungen frühzeitig, flexibel und zielgerichtet zu berücksichtigen.

Kompetenzen durch Kooperationen

Mittel- bis langfristiger Zeitfokus

Technologiebereitschaftsgrad

Die Zielsetzung, technisch-wissenschaftliche Kompetenzen sicherzustellen, wird mit Forschungsaktivitäten verfolgt, welche sich von der Technologiefrüherkennung, über ein Technologiemonitoring und themenspezifischen Programmen bzw. Projekten bis hin zur Bereitstellung von Technologiedemonstratoren erstrecken. Damit wird im Rahmen der Forschung

Abbildung 4:
Schwerpunkt der Forschungsinvestitionen in Bezug auf den Technologiebereitschaftsgrad (TRL steht für Technology Readiness Level)

Technologie-Lebenszyklus

In Analogie zum Produktlebenszyklus durchlaufen auch Technologien einen Lebensdauerzyklus, wobei der Entwicklungsstand einer Technologie einen wesentlichen Einfluss auf strategische Handlungsoptionen hat. Für Innovationen und die Weiterentwicklung von Substitutionstechnologien ist daher der Technologie-Lebenszyklus zu beachten. Der Lebenszyklus beginnt gemäss S-Kurven-Modell mit einer Schrittmachertechnologie (noch nicht verfügbar, zukünftig relevant), die sich zur Schlüsseltechnologie (wettbewerbsentscheidend) weiterentwickeln kann und endet als Basistechnologie (Standard), die allenfalls durch innovative Technologien verdrängt wird.

Abbildung 5:

Die Forschung armasuisse konzentriert sich aufgrund der beschränkten Ressourcen bei den Technologielebensphasen primär auf die Wachstums- und Reifephase (Schlüsseltechnolo-

Interdisziplinäre Vernetzung

2.3 Gesetzlicher Auftrag und Grundlagen

Der Auftrag für die Forschung armasuisse ergibt sich hauptsächlich aus der Organisationsverordnung für das VBS, der Rüstungspolitik des VBS, der Verordnung des VBS über das Armeematerial, dem Armeebericht 2010, dem aktuellen Masterplan Streitkräfte- und Unternehmensentwicklung der Schweizer Armee und der Integrierten Aufgaben- und Finanzplanung (IAFP) für armasuisse Wissenschaft und Technologie. Zudem sind folgende Vorgaben und Grundlagen zu beachten:

Bund
- Bericht des Bundesrates an die Bundesversammlung über die Sicherheitspolitik der Schweiz, 23. Juni 2010 und Entwurf 2016
- Verordnung zum Bundesgesetz über die Förderung der Forschung und Innovation (V-FIFG), SR 420.11, Stand: 1. Januar 2015
- Grundsätze für die Erstellung der Konzepte 2017-2020 betreffend die Forschungsaktivitäten der Bundesverwaltung in den 11 Politikbereichen, Oktober 2014

Departementsbereich Verteidigung
- Bundesgesetz über die Armee und die Militärverwaltung (Militärgesetz, MG), SR 510.10, Stand: 1. November 2012
- Organisationsverordnung für das Eidgenössische Departement für Verteidigung, Bevölkerungsschutz und Sport (OV-VBS), SR 172.214.1, Stand 1. Januar 2014
- Verordnung des VBS über das Armeematerial (VAMAT), SR 514.20, Art 5 Anhang 2, 1. Januar 2011
- Armeebericht 2010, 1. Oktober 2010
- Strategische Steuerung des Departementsbereichs Verteidigung, Ausgabe 2015
- 14 strategische Stossrichtungen der Schweizer Armee 2015-2020
- Teilstrategie Vernetzte Operationsführung, 1. Mai 2011
- Rahmenvereinbarung über die Zusammenarbeit zwischen den Departementsbereichen Verteidigung und armasuisse TUNE14, Anhang IX-W+T, 1. Januar 2015
- Reglement 75.001 d Nachrichtendienst in der Armee (RNDA), Stand: 22. Januar 2007
- Verordnungs des VBS über das Fliegerärztliche Institut (VFI), Stand: 27. November 2001
- Konzeptionsstudie Wissenschaft und Technologie des VBS für die Armee. Teil 1: Grundlagen, August 2002
- Konzeptionsstudie Wissenschaft und Technologie des VBS für die Armee. Teil 2: Umsetzung, August 2002

Departementsbereich armasuisse

- Grundsätze des Bundesrates für die Rüstungspolitik des VBS, 30. Juni 2010
- Beschaffungsstrategie des Bundesrates für das VBS, 31. März 2010
- Industriebeteiligungsstrategie, 31. März 2010
- Aktuelle Unternehmensstrategie armasuisse
- Strategische Ziele des Bundesrates für seine Beteiligung an der RUAG Holding AG (Eignerstrategie 2015-2019)
- armasuisse Wissenschaft und Technologie W+T, Businessplan (z. Hd. der Rüstungskommission), 11. Februar 2014
- NFB: Integrierte Aufgaben und Finanzplanung armasuisse 2017-2020, Leistungsgruppe Wissenschaft und Technologie (Entwurf)
- Managementsystem armasuisse (IMS AR): Technologie- und Forschungsmanagement (Prozess Id 2.20.25 und Dok Id 40031)
- Langfristiger Forschungsplan (LFP 2012-2016, Wissenschaft und Technologie, armasuisse), 22. Dezember 2011
2.4 Rückblick auf Periode 2012-2016

2.5 Finanzierung

2.6 Herausforderungen und Handlungsbedarf

Der rasche technologische Fortschritt mit seinen kurzen Innovationszyklen in ausgewählten Technologiebereichen stellt sich der eher langfristig ausgerichteten Nutzung von Systemen der Armee entgegen. Der rechtzeitige (nicht zu frühe und nicht zu späte) Einstieg in eine Technologie und die zunehmende Komplexität, welche durch die fortschreitende Digitalisierung der Systeme, ihre Vernetzung und ihre Kompatibilitätsanforderungen entstehen, stellt eine Milizarmee vor grosse Herausforderungen, will sie ihre personellen und finanziellen Mittel gezielt und zeitgerecht verwenden. Ferner gilt es das Bewusstsein zu stärken, welche Gefahren und Abhängigkeiten sich aus der Nutzung moderner Technologien ergeben und eine gewisse Resilienz zu entwickeln, wenn diese in einer Krise nicht mehr zur Verfügung stehen.

3 Forschungsschwerpunkte und prioritäre Themen 2017-2020

Ein besonderes Gewicht wurde wiederum den operationellen Fähigkeiten der Armee beigemessen. So bezieht sich der erste FSP dabei direkt auf die operationellen Fähigkeiten der Armee. Dabei adressiert das prioritäre Themenfeld Informationsüberlegenheit die Fähigkeitsbereiche Nachrichtendienst und Führungsfähigkeit, wie auch die Wirkung im elektromagnetischen-, Cyber- und Informationsraum. Das zweite Themenfeld bezieht sich primär auf die Wirkung in der Luft und am Boden, sowie den Schutz eigener Kräfte. In den weiteren FSP wird der Fokus sowohl auf die Integration von Technologien für die Optimierung von Einsatzsystemen als auch auf Innovations- und Querschnittsthemen gesetzt.

Abbildung 7: Geplante Forschungsschwerpunkte und prioritäre Themen für die Jahre 2017-2020

In den folgenden Kapiteln werden die prioritären Themen innerhalb der Forschungsschwerpunkte einzeln dargestellt und erläutert. Die Stichworte zu den einzelnen prioritären Themen enthalten auch Begriffe der European Defence Agency (EDA) als Informationsgrundlage für allfällige Kooperationsprojekte.
3.1 Technologien für operationelle Fähigkeiten: Informationsüberlegenheit

Stichworte

EDA: Signaturbezogene Anwendungen (A02), Photonische/Optische Anwendungen (A04), Chemische, biologische und medizinische Anwendungen (A07), Informations- und Signalverarbeitung (A09), Signaturbeherkshung & Signaturverminderung (B05), Sensortechnik (B06), Kommunikations- und Informationstechnologien (B10), Integrierte Plattformen (C02), Aufklärungssysteme (C07);

3.1.1 Veranlassung und Nutzen

Die zeit- und auftragsgerechte Bereitstellung und Bearbeitung von Informationen bzw. ein zielgerichteter Informationsfluss werden idealtypisch durch effiziente Informationsaufbereit-
ung und effektives Informationsmanagement geleistet. Zu den formalen Verfahren der Informationsaufbereitung gehört die semantische Zusammenführung aller zur Verfügung stehenden Informationen aus unterschiedlichsten Bezugsmedien wie beispielsweise Bilder, Text, Ton, Geo-Tags oder Videos. Dabei bestehen die pragmatischen Mehrwertleistungen der Aufbereitung im Wesentlichen in Verfahren zur bedarfsorientierten Bereitstellung von Informationen, welche das Informationsverhalten der Beteiligten berücksichtigen und potenzielle Aufklärungsziele auch bei schwierigen Umgebungsbedingungen und unübersichtlicher Lage erschliessen.

3.1.1.1 Lagebild

Die Armee und andere Institutionen des Staates (Skyguide, Polizei etc.) sind auf zeitnahe Lagebilder in den vier Wirkungsräumen (Boden, Luft, elektromagnetischer Raum und Cyberraum) angewiesen, um ihre hoheitlichen Aufgaben effizient und sicher erfüllen zu können. Ein aktuelles, vollständiges, stufengerechtes und übersichtliches Lagebild ist die Basis für fundierte Führungsentscheide und spielt daher als Führungsinstrument eine Schlüsselrolle.

In einem Lagebild werden Informationen zusammengefasst, welche zuvor durch einen Aufklärungsverbund, aber auch durch den Einbezug öffentlich zugänglicher Informationen (Crowd Sourcing) gesammelt, ausgewertet und aufbereitet wurden. Es dient dazu einem Entscheidungsträger die tatsächliche aktuelle Lage so genau wie möglich wiederzugeben. Das gemeinsame Lagebild, bei dem alle Informationen über fremde Akteure und die eigenen Sicherheitskräfte zusammenfließen, spielt eine Schlüsselrolle für ein gemeinsames Lageverständnis und ein kohärentes Vorgehen verschiedener Verbände. Je nach Stufe, auf welcher das Lagebild erstellt wird, umfasst es die Informationen aller Teilstreitkräfte oder wird zusätzlich durch Informationen anderer Sicherheitsinstrumente des Staates (z.B. Nationale Alarmzentrale) zu einem gesamtstaatlichen Lagebild ergänzt.

Dass die Weiterentwicklung von Führungsinformationssystemen trotz scheinbar eindeutigen Anforderungen auch nach Jahrzehnten der Entwicklung nicht trivial ist, hat mehrere Gründe. Neben technischen Herausforderungen müssen auch Fragen der angemessenen Aggregation und Fusion zur Verfügung stehender Informationen, aber auch Aspekte des Datenschutzes oder einer adäquaten Visualisierung der Lage gelöst werden. Dabei wird rasch deutlich, dass eine optimale Lösung auf die Einsatzform und Kommandoebene mit unterschiedlichen Detaillierungsgraden und Darstellungsformen ausgerichtet werden muss. Aufgrund der Fortschritte in der Sensor-, Navigations-, Übermittlungs- und Displaytechnik wer-
den heute vermehrt lokale Lagedarstellungen auf unterster taktischer Stufe den einzelnen Soldaten zur Verfügung gestellt.

In der Erstellung einer ausgewerteten Luft- oder Bodenlage bestehen heute noch Fähigkeitslücken, welche in Zukunft geschlossen werden sollen. Eine übersichtliche und stufengerechte Darstellung der aktuellen Lage und die Nutzung von integrierten Simulationswerkzeugen, kombiniert mit dem Wissen und der Erfahrung der Entscheidungsträger, sind die Schlüssellemente für eine effiziente Informationsnutzung und eine erfolgsversprechende Operationsplanung und -führung.

3.1.1.2 Kommunikation

3.1.1.3 Cyberspace und Informationsraum

3.1.1.4 Aufklärung und Überwachung

Identfristiger Forschungsplan 2017-2020

3. Forschungsschwerpunkte

3.1.2 Mehrwert der Forschungsresultate

Resultate und Erkenntnisse aus Forschungstätigkeiten in diesem prioritären Thema unterstützen die Schweizer Armee im Aufbau von informations- und kommunikationstechnischen Fähigkeiten, mit dem Ziel der vernetzten Operationsführung mit angemessener Informationsüberlegenheit.

3.1.2.1 Mehrwert für A Stab, FST A, HEST, MND, FUB, HKA, LBA, HE, LW, NDB, BABS (NAZ, Labor Spiez), Blaulichtorganisationen

- Beurteilungsfähigkeit des Leistungs- und Entwicklungspotenzials neuer Technologien
- Beitrag zur Weiterentwicklung der Interoperabilität und der vernetzten Operationsführung mit zivilen Partnern im nationalen Sicherheitsverbund
- Verstärkung des Nachrichtenverbundes
- Förderung des besseren Verständnisses für die Wechselwirkungen zwischen Entscheidungsträgern, Sensoren und Wirkmitteln
- Technologieprognosen und Beratung von der Informationsgewinnung bis zur Lagebilddarstellung
- Empfehlungen für den optimierten Einsatz der Wirkmittel
- Empfehlungen für Tarnung und Täuschung
- Empfehlungen für optimale Mensch-Maschine-Schnittstellen bei modernen Überwachungssystemen
- Verbesserung der Freund-Feind-Erkennung in einem Lagebild und die damit verbundene Optimierung der Operationsplanung
- Grundlagen für einen streitkräftegemeinsamen Ausbildungs- und Simulationsverbund
- Sensibilisierung bezüglich Gefährdung der eigenen Informationssicherheit und Entwicklung entsprechender Gegenmassnahmen
- Grundlagen zur Überwachung der Sicherheit von Computernetzwerken
- Technische Grundlagen für die Nachrichtenbeschaffung aus dem Internet
- Empfehlungen für die Generierung eines Lagebilds im Cyberspace
- Kompetenzbeiträge zu Fähigkeitslücken gemäss Masterplan Streitkräfte- und Unternehmensentwicklung der Schweizer Armee
- Technologieberatung zugunsten Militärdoktrin und Fähigkeitsmanager des A Stabs
- Empfehlungen für die Auswertung von Signaturen zugunsten des IMINT-Centers

3.1.2.2 Mehrwert für armasuisse

- Technische Beurteilung der Leistungsfähigkeit von Sensoren (inkl. Radar) und von Gegenmassnahmen
- Reduktion von technischen Risiken bei Evaluationen und Beschaffungen
- Messung von Signaturen als Grundlage für Signaturenmanagement und zur Beurteilung von eigenen und fremden Tarnmitteln und Tarnmassnahmen
- Berücksichtigung von Risiken betreffend Informationssicherheit (z.B. Intrusion Detection) bei Beschaffungsvorhaben und eingesetzten Systemen
3.1.3 Zielsetzungen

Neue technische Möglichkeiten sind aufzuzeigen und Fachkenntnisse für die Beratung und Beurteilung sind weiter voranzutreiben, um Leistungsgrenzen und die Integration von Technologien für neue Einsatzmöglichkeiten demonstrieren zu können.

3.1.3.1 Lagebild

3.1.3.2 Kommunikation

3.1.3.3 Cyberspace und Informationsraum

Bei der Analyse von öffentlich zugänglichen Informationsquellen und sozialen Medien stellen sich technologisch wie auch analytisch grosse Herausforderungen. Mit Hilfe der Forschung werden technische Mittel beurteilt, welche zur Beschaffung, Beeinflussung und Gegenwirkung im Informationsraum eingesetzt werden. Ein Fokus liegt auf der anonymen Informationsbeschaffung aus öffentlichen Quellen, ein anderer auf der Identifikation von Möglichkeiten zur automatisierten Informationssuche in öffentlichen Netzen (OSINT) und in internen unstrukturierten Datenbanken. Unter anderem werden skalierbare Methoden geprüft, um grosse Datenmengen (Big Data) anonym und in Echtzeit zu erfassen sowie hinsichtlich zeitlicher und lageabhängiger Relevanz zu klassieren. Zur Verarbeitung von Informationen sind Möglichkeiten zur Filterung und automatisierten Fusion relevanter Daten und Inhalte, die Unterstützung von unterschiedlichen Datenstrukturen, Medienformate und Sprachen zu untersuchen. Dabei sind die automatisierte Integration und Digitalisierung von Informationen, die semantische Strukturierung gespeicherter Inhalte und Methoden zur Mustererkennung über verschiedene Informationsformen hinweg zentral.

Analytische Fähigkeiten sollen mit Hilfe von experimentellen Ansätzen auf der Basis von Demonstratoren und Prototypen angegangen und weiterentwickelt werden.

3.1.3.4 Aufklärung und Überwachung

Neben der Betrachtung des einzelnen Sensors wird vermehrt die Multisensorik und die damit verbundene Datenfusion zum zentralen Thema. Durch intelligente Verfahren besteht nicht nur die Möglichkeit aus den verschiedenen Sensordaten ein integriertes Lagebild zu erzeugen, sondern auch mit Hilfe von Sensorarrays beispielsweise Schallquellen zu orten.
oder Interessensräume in dreidimensionalen Darstellungen zur Verfügung zu stellen, in denen man sich virtuell bewegen kann.

In der Sensor- und Radartechnik (im visuellen, ultravioletten, infraroten und hyperspektralen Bereich, aber auch bei Millimeterwellenradarsystemen, Such- und Trackingradarsystemen, abbildenden Radarsystemen, Passivradarsystemen, Suchkopfradarsystemen und Akustik) werden regelmässig technische Fortschritte erzielt, welche die Aufklärungs- und Überwachungsleistung sowohl in der Luft als auch am Boden massiv steigern und so Lagebilder ergänzen. Die Fähigkeit, bewegte Objekte und Personen aus grosser Distanz bei allen Wetterlagen mit genauen Entfernungsinformationen zu erfassen, macht diese Sensorsysteme für den Einsatz teilweise unentbehrlich. In naher Zukunft sind diverse neue Ansätze in der Radartechnologie zu erwarten. Dies betrifft zum einen die sogenannten intelligenten Radarsysteme (Kognitive Radarsysteme) und zum anderen Radarsysteme, welche kaum mehr zu lokalisieren sind. (bi- und multi-statische Radarsysteme, Rauschradar, vorwärtsstreuende Radarsysteme, etc.). Zu erwähnen sind in diesem Zusammenhang auch Radarsysteme deren Zielidentifikation auf hoher Auflösung in radialer Richtung (sogenannte hochaufgelöste Entfernungssensoren) basiert. Es gilt die Leistungsgrenzen und Potenziale dieser neuen, aber auch komplexen Technologien zu erfassen.

Um zu verstehen, wie Auswertungen automatisiert und Benutzerschnittstellen optimal ausgestaltet werden können, soll schliesslich auch die Vorgehensweise des Menschen bei der Auswertung von Aufklärungsresultaten und sein Umgang mit komplexen Informationen untersucht werden.

3.1.3.5 Umsetzungsziele

Ferner sollen Forschungsfelder identifiziert werden, welche es erlauben die Abhängigkeit von Weltraumanwendungen für Aufklärung und Navigation zu reduzieren und durch die Untersuchung von neuen kommerziellen Aufklärungssatelliten redundante Bezugsquellen zu schaffen.

3.1.4 Potenzielle Partner – Internationale Zusammenarbeit

3.1.4.1 Universitäten und Hochschulen

- ETH Zürich, Institut für elektromagnetische Felder
- ETH Zürich, Institut für integrierte Systeme
- ETH Zürich, ZISC (Zurich Information Security and Privacy Center)
- EPF Lausanne, Microelectronic Systems Laboratory
- EPF Lausanne, Laboratory of intelligent Systems
- EPF Lausanne, Artificial Intelligence Laboratory
- EPF Lausanne, Institute of Microengineering IMT, Neuchâtel
- HEIG VD - Haute Ecole d'Ingénierie et de Gestion du Canton de Vaud, Yverdon
- Universität Zürich, Remote Sensing Laboratories (SARLab und SpektroLab)
- Universität Bern, Geographisches Institut
- Universität Bern, Institut für angewandte Physik
- Universität Fribourg, Département d'informatique - eXascale Infolab
- Zürcher Hochschule für angewandte Wissenschaften, Winterthur (ZHAW)
- Universität Kaiserslautern (DEU)
- Technische Universität Wien (AUT)
- University of Oxford (UK)
- IMDEA Network Institute (ESP)
- University of Brescia (ITA)
- University of Ljubljana (SLO)

3.1.4.2 Industrie

- RUAG Schweiz AG, Zürich
- SSZ Camouflage Technologies, Zug
- Impreglon Coatings AG, Altdorf
- IAV Engineering, Lausanne
- Distran GmbH, Zürich
- BeOne Schweiz AG, Rotkreuz
- Forventis GmbH, Zürich
- Swisscom Innovations, Ostermundigen
- Rayzon Technologies AG, Ittigen
- IBM Research, Rüschlikon
- Thales Schweiz AG, Zürich
- Sensefly GmbH, Cheseaux
- Noser Engineering AG, Bern
- Trivadis AG, Bern
- MFB GeoConsulting GmbH, Messen
- Kudelski Security, Cheseaux
- Sero Systems, Kaiserslautern (DEU)
- Ing. Büro für Sensorik und Signalverarbeitung, Bexbach (DEU)

3.1.4.3 Bund

- VBS / BABS / Labor Spiez
- VBS / armasuisse / Bundesamt für Landestopografie swisstopo / Kompetenzzentrum für Geoinformationen des Bundes / Mil Geo Institut
- METEO Schweiz AG
- Melde- und Analysestelle Informationssicherung MELANI

3.1.4.4 Staatliche Partner

- NATO/PfP Forschungsarbeitsgruppen: Wehrtechnische Forschungsinstitute aus den Ländern Deutschland, Frankreich, Italien, Holland, England, Norwegen, Schweden, Kanada, USA, Tschechien, Polen
- Swedish Defence Research Agency FOI (SWE)
- Wehrtechnische Dienststelle für Informationstechnologie und Elektronik WTD-81, Greding (DEU)
- Wehrtechnische Dienststelle für Schutz und Sondertechnik WTD-52, Oberjettenberg (DEU)
- Wehrwissenschaftliche Institut für Schutztechnologien ABC-Schutz WIS, Munster, (DEU)
- Fraunhofer Forschungsinstitut für Hochfrequenzphysik und Radartechnik FHR, Wachtberg (DEU)
- Fraunhofer Forschungsinstitut für Optronik, Systemtechnik und Bildauswertung IOSB, Ettlingen (DEU)
- Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen DLR (DEU)
- Defence, Peace, Safety and Security CSIR, Pretoria (SAF)
3.2 Technologien für operationelle Fähigkeiten: Wirkung und Schutz

Stichworte:

Schutz: Aktiver Schutz, Chaff (Düppel), Elektromagnetische Verträglichkeit (EMV), Flares, Kollateralschaden, Minenräumung, Morphing, passiver Schutz, Panzerungen (inkl. Leicht-, Reaktiv- und Kompositemanagement, Stealth, Tarnung (multispektral) und Täuschung, Verwundbarkeitsmodelle, Wuchtmunition, Zielgenauigkeit, Zündung;

EDA: Strukturwerkstoffe, intelligente Materialien und Strukturmechanik (A01), Energetische Materialien und Plasma-Technologien (A06), Schadenswirkung und Schutz (B01), Designtechnologien für Plattformen und Waffen (B03), Elektronische Kriegsführung und Laser-/Strahlentechnologien (B04), Lenk- & Kontrollsysteeme für Waffen und Plattformen (B07), Personenschutz (B11), Waffensysteme (C03), Anlagen und Einrichtungen (C04);

3.2.1 Veranlassung und Nutzen

3.2.1.1 Wirkmittel

Trendbeobachtungen weisen darauf hin, dass Munition in Zukunft leistungsfähiger und gleichzeitig weniger empfindlich sein wird (insensitive Munition). Durch den Einsatz neuer energetischer Materialien und dank Optimierung der Verpackung ist moderne Munition sehr resistent gegen Hitze (langsamer oder spontane Erwärmung) und mechanische Einflüsse. Die reduzierte Empfindlichkeit wirkt sich nicht nur auf die Sicherheit von Personen (Soldaten und Zivilbevölkerung) positiv aus, sondern hat auch Vorteile in der Logistik und der Handhabung von Munition.

3.2.1.2 Schutz

Schutz und Überlebensfähigkeit sind Kernfähigkeiten moderner Streit- und Sicherheitskräfte. Sie sind unerlässlich, um den Operationserfolg und damit die Aufgabenerfüllung zu gewährleisten. Umfang und Ausmass des benötigten Schutzes werden durch die Einsatzbedingungen, die allgemeinen technologischen Entwicklungen (z.B. neue Werkstoffe) und die Charakteristik der gegnerischen letalen bzw. nicht-letalen Wirkmittel bestimmt.

Militärische Infrastrukturen im In- und Ausland müssen gegen unterschiedliche Gewalteinwirkungen (z.B. militärische Waffeneinwirkung, terroristische Angriffe) geschützt werden. Der Bau von Schutzanlagen im Inland ist weitgehend abgeschlossen. Um die Werterhaltung dieser Infrastrukturen zu gewährleisten, müssen internationale Entwicklungstrends auf diesem Gebiet verfolgt werden, damit relevante Veränderungen oder Verbesserungen der Schutzkonzepte rechtzeitig erkannt werden. Im Ausland eingesetzte Truppen weisen ein besonderes Schutzbedürfnis aus (z.B. gegen terroristische Angriffe mit Bomben), weil sie zumeist in provisorischen Einrichtungen (Camps) untergebracht werden und sich frei in der Einsatzumgebung bewegen müssen.

Trotz Fortschritten bei der Detektion und Neutralisierung von IED’s (Improved Explosive Devices) stellen improvisierte Sprengladungen für Einsatzkräfte und die Bevölkerung in asymmetrischen Konfliktsituationen eine latente Bedrohung dar. Daher ist es wichtig, dass die Detektion von IED’s und mögliche Neutralisierungstechniken weiter verbessert werden. Wie Erfahrungen aus Einsatzgebieten zeigen, kann die Verhinderung von Anschlägen sehr effektiv sein, wenn versucht wird, Anomalien in der Handsels- und Logistikketten spezifischer
Bauteile und Substanzen, welche für den Bau von IED’s verwendet werden, aufzuspüren. Damit lassen sich Hersteller von IED’s identifizieren.

3.2.2 Mehrwert der Forschungsresultate

3.2.2.1 Mehrwert für A Stab, HE, Mil Sicherheit, LW, BABS, Blaulichtorganisationen

- Grundlagen für Optimierung des Einsatzes der eigenen Wirkmittel
- Erkenntnisse für den Aufbau eines streitkräftegemeinsamen Wirkungsverbundes (dabei insbesondere Abstimmung der Beiträge der Teilstreitkräfte aufeinander)
- Vertieftes Verständnis der Zusammenhänge zwischen Risiken für Mensch und Material, Operationsdurchführung und passiven Schutzmassnahmen
- Beurteilung der Vor- und Nachteile nicht-letaler Wirkmittel
- Analyse der Einsatzmöglichkeiten und des Entwicklungspotenzials sowie der Chancen und Risiken nicht-letaler Wirkmittel
- Beurteilung der Einsatzdoktrin der eingesetzten Plattformen in Abhängigkeit möglicher gegenerischer Wirkmittel
- Verständnis der Leistungsfähigkeit und neuer gegenerischer Wirkmittel
- Grundlagen für den Schutz kritischer (militärischer und ziviler) Infrastruktur
- Wissenserhalt für die Bewirtschaftung der Schutzinfrastruktur
- Kompetenzbeiträge zu Fähigkeitslücken gemäss Masterplan Streitkräfte- und Unternehmensentwicklung der Schweizer Armee

3.2.2.2 Mehrwert für armasuisse

- Kompetenz für Munitionssicherheit und –überwachung
- Grundlagen und Wissen zu Alterungsverhalten, Lebensdauer, Transport, Lagerung, Einsatz und Entsorgung von Munition
- Grundlagen für die Detektion von Sprengstoffen
- Beurteilung von Optionen für die Leistungserhaltung und -steigerung von Wirkmitteln
- Kenntnisse über Schutzanforderungen
- Beurteilung von Optionen für Kampferwerterhaltung und Kampfwertsteigerung
- Beurteilung unterschiedlicher Schutzoptionen
- Grundlagen für den Schutz kritischer (militärischer und ziviler) Infrastruktur
- Wissenserhalt für die Bewirtschaftung der Schutzinfrastruktur

3.2.2.3 Mehrwert für das Kompetenzzentrum ABC-KAMIR der Armee

- Unterstützung bei Ausbildung und Beratung
- Grundlagen für passive Schutzmassnahmen
- Grundlagen zur Beurteilung von KAMIR-Tätigkeiten

3.2.2.4 Mehrwert für das NIS-Kompetenzzentrum

- Technisches Wissen und Erfahrungen für Ausführungsbestimmungen
3.2.3 Zielsetzungen

3.2.3.1 Wirkmittel

Aufgrund der absehbaren Entwicklung werden sich Forschungsergebnisse im Bereich letaler Wirkmittel auf spezifische Fragestellungen konzentrieren, welche sich im Zusammenhang mit neuen Bedrohungen, wie beispielsweise der Bekämpfung von unbemannten Plattformen, ergeben. Auch die Fortschritte in der Zielzuweisung und präzisen Zielbekämpfung müssen weiterhin beurteilt werden können. In einem längerfristigen Zeithorizont kann nicht ausgeschlossen werden, dass wiederum grössere Entwicklungsschritte im Bereich letaler Wirkmittel verzeichnet werden. Deshalb soll die Weiterentwicklung der letalen Wirkmittel in Form eines Technologie-Monitorings und durch die Beobachtung der Märkte verfolgt werden.

3.2.3.2 Schutz

Zur Sicherstellung des Schutzes gegen elektromagnetische Pulse (EMP) soll die Test- und Evaluationsfähigkeit für heutige und kommende Systeme sichergestellt werden. Ergänzend dazu werden die technischen Fortschritte elektromagnetischer Quellen und die damit ver-
bundenen Risiken evaluiert, um geeignete Schutzmassnahmen, insbesondere auch gegen Mikrowellenwaffen (HPM) abzuleiten.

Die NIS-Bundesverordnung\(^8\) bedingt den Kompetenzerhalt im Bereich der nichtionisierenden elektromagnetischen Quellen. Um den Nachweis zu erbringen, dass die rechtlich verbindlichen Grenzwerte eingehalten werden, muss im Nahbereich von militärischen Sendeanlagen das elektromagnetische Feld berechnet oder gemessen werden können. Anwendungsorientierte Forschungstätigkeiten sind hier erforderlich, um Messmittel und Modelle an die Entwicklung der Antennentechnologie anzupassen und so dem Stand der Technik zu folgen.

\(^8\) Verordnung über den Schutz vor nicht ionisierender Strahlung (NISV) vom 23.12.1999, SR 814.710
3.2.3.3 Umsetzungsziele 2017-2020

Die Wirkung und Sicherheit von Munition kann nur sichergestellt werden, wenn ihre Lager-, Transport- und Handhabungssicherheit, wie auch ihr einwandfreies Funktionieren gewährleistet werden kann. Im Rahmen der Munitionsüberwachung ermöglicht die Forschung die Weiterentwicklung wissenschaftlicher Grundlagen und Modelle zur Beschreibung der Alte rung und Sicherheit von Munition. Damit wird der Prozess der Munitionsüberwachung den neuesten internationalen Erkenntnissen angepasst und dessen Effizienz ohne Risikoerhö hung verbessert. Zudem ermöglicht eine solide wissenschaftliche Basis eine fundiert abgestützte Verlängerung der Lebensdauer von Munition, was insbesondere bei Lenkwaffen zur Einsparung von Kosten führt.

Auch improvisierte Spreng- und Brandvorrichtungen (IED's) bilden eine Gefahr, welche teilweise noch unterschätzt wird. Ihr Gefährdungspotenzial soll experimentell und theoretisch untersucht werden. Dazu sollen solche improvisierte Vorrichtungen, soweit möglich, nach internationalen Normen nachgebaut und getestet werden. Ziel ist die Ableitung geeigneter Präventions- und Schutzmassnahmen für die eigenen Kräfte.

Die Funktion elektronischer Geräte ist mit energetischen elektromagnetischen Pulsen (HPE) störbar. Zur Prüfung der Störanfälligkeit werden die Energieverteilung im Emissionsspektrum eines typischen HPE-Pulses und dessen Einkopplung in das zu störende Gerät untersucht.

Obwohl Tarnung und Täuschung sehr effektive Mittel zum Schutz von mobilen Plattformen sind, hat die entsprechende Fähigkeit bei der Schweizer Armee momentan keine hohe Priorität. Deshalb wird auch im Rahmen der Forschung diese Thematik nur in Nischen bearbeitet. Die Täuschung von Lenkwaffen mit Hilfe von Flares und Düppel geniesst dabei Prio-

Um den Einfluss von nicht-ionisierender elektromagnetischer Strahlung gemäß NIS-Bundesverordnung beurteilen zu können, sind Methoden für die Berechnung der Intensität des abgestrahlten elektromagnetischen Felds im Nahbereich von Antennen weiterzuentwickeln, um so dem Stand der Technik moderner Einsatzmittel zu folgen.

Um Kollateralschäden minimal zu halten, müssen bei der Vernichtung von Kampfmitteln oder IED’s in einem urbanen Umfeld adäquate Grundlagen für die Festlegung von Sicherheitsradien geschaffen werden. Die zahlreichen Reflexionen der Schockwellen an Gebäudefassaden und anderen Hindernissen bedingen ein Modell zur Berechnung des Überdrucks in einem komplexen Umfeld. Simulationsgestützte Grundlagen und ein entsprechendes Simulationswerkzeug, welches ein urbanes Umfeld berücksichtigen kann, sollen eine präzise, schnelle und einfache Berechnung von Sicherheitsradien ermöglichen.

Der Kompetenzaufbau für den Schutz gegen ABC-Gefahren konzentriert sich auf neue Technologien für die Detektion von biologischen Kampfstoffen. Dazu werden im Labor und mit der Truppe neue Verfahren getestet, um eine bessere Erkennungsraten zu erreichen und eine Anpassung an neue biologische Bedrohungen zu ermöglichen.
3.2.4 Potenzielle Partner – Internationale Zusammenarbeit

3.2.4.1 Universitäten und Hochschulen

- ETH Zürich, Computer Vision Lab
- EPF Lausanne, Centre of MicroNano Technology, Laboratory of Microsystems
- Universität Bern, Institut für Rechtsmedizin, Forensische Physik und Ballistik
- Universität Fribourg, Département de Chimie
- Universität Lausanne, Institute du Police Scientific
- EMPA, Advanced Materials Processing, Thun und Acoustic/Noise Control, Dübendorf
- Paul Scherrer Institut (PSI), Würenlingen
- Berner Fachhochschule, Technik und Informatik, Biel
- Haute école d’ingénierie et d’architecture de Fribourg, Institut de Chimie
- Fachhochschule Nordwestschweiz (FHNW), Institut für Aerosol- und Sensortechnik
- Scuola universitaria professionale della Svizzera italiana (SUPSI), Dettaglio della ricerca
- Universität Würzburg (DEU)
- Technische Universität Hannover (DEU)
- University of Florida (USA)

3.2.4.2 Industrie

- AKTS AG Siders
- Bienz, Kummer & Partner, Zürich
- Cassidian Schweiz GmbH, Muri
- Dynamic Phenomena GmbH, Lausanne
- EMProtec GmbH, Hinwil
- Forventis GmbH, Zürich
- General Dynamics European Landsystems, Kreuzlingen
- Ingenieurbüro Heierli AG, Zürich
- IMSD Sàrl, Montfaucon
- Impreglon AG, Altdorf
- L&G Software, Elsau
- Mandanis angewandte Mechanik GmbH, Kriens
- Montena emc, Rossens
- Nitrochemie AG, Wimmis
- RUAG Schweiz AG, RUAG Defence, Thun
- Saab Bofors Dynamics Switzerland, Thun
- Supercomputing Systems AG, Zürich
- Swisscom Innovations AG, Bern
- Logitech Europe S.A., Lausanne
- Rheinmetall Air Defence AG, Oerlikon
3.2.4.3 Bund und Kantone

- VBS / BABS / Labor Spiez
- VBS / BABS / AG SKI
- VBS / Verteidigung / FSTA / Kompetenzzentrum ABC-KAMIR der Armee
- VBS / armasuisse / Immobilien / SG SIM
- Office fédéral de la police (FedPol)
- Polizei, Technik und Informatik (PTI)
- Wissenschaftlicher Forschungsdienst der Stadtpolizei Zürich (WFD)

3.2.4.4 Staatliche Partner

- Wehrwissenschaftliches Institut für Werk-, Explosiv- und Betriebsstoffe WIWEB, Erding (DEU)
- Wehrtechnische Dienststelle für Schutz und Sondertechnik WTD 52, Schneizlreuth (DEU)
- Wehrtechnische Dienststelle für Waffen und Munition WTD 91, Meppen (DEU)
- Bundesamt für Ausrüstung, Informationstechnik und Nutzung der Bundeswehr, Koblenz (DEU)
- Fraunhofer-Institut für Chemische Technologie ICT, Pfinzthal (DEU)
- Fraunhofer-Institut für Kurzzeitdynamik, Efringen-Kirchen (DEU)
- Institut franco-allemand de recherche pour la défense, Saint-Louis (FRA/DEU)
- Direction générale de l’armement DGA, Paris (FRA)
- Army Engineer Research and Development Center ERDC, Vicksburg (USA)
- Defense Threat Reduction Agency, Fort Belvoir (USA)
3.3 Technologienintegration für Einsatzsysteme:
Unbemannte Mobile Plattformen

Stichworte

EDA: Strukturelle & intelligente Werkstoffe & Strukturmechanik (A01), Signaturbezogene Anwendungen (A02), Elektronische, elektrische & elektromechanische Anwendungen (A05), Informations- und Signalverarbeitung (A09), Energie- und Antriebstechnik (B02), Konstruktionstechnologien für Plattformen & Waffen (B03), Signaturbeherrschung & Signaturverminderung (B05), Sensortechnik (B06), Lenk- & Kontrollsysteme für Waffen & Plattformen (B07), Systemintegration (B09), Kommunikations- und Informationstechnologien (B10), Herstellungsprozesse, Konstruktionswerkzeuge & -techniken (B12), Integrierte Plattformen (C02), Waffensysteme (C03), Aufklärungssysteme (C07);

3.3.1 Veranlassung und Nutzen

Ebenfalls durch den zivilen Markt getrieben ist die Entwicklung von unbemannten Luftfahrzeugen, welche über Monate, teilweise sogar über Jahre ihre Mission erfüllen sollen. Fortschritte in der Effizienz von Solarzellen und Batterien werden es solchen Fluggeräten ermöglichen autark zu operieren. Dabei ist angedacht, dass derartige Flugplattformen aufgrund der günstigen Sonnen-, Wind- und Luftverkehrsbedingungen in die Stratosphäre aus-

Treiber für die autonome Mobilität am Boden sind die grossen Märkte der internationalen Automobilhersteller. Was wir heute als Fahrrassistenzsysteme in modernen Fahrzeugen wahrnehmen, sind Elemente zum Aufbau von autonomen Systemen auf der Strasse. Obwohl bereits einzelne autonome Fahrzeuge (UGV) zugelassen sind, ist mit einer flächendeckenden Einführung nicht zu rechnen, bevor rechtliche Aspekte geklärt sind. Die technische Entwicklung wird zwar weitergehen, es ist jedoch vorläufig der Mensch, der als letzte Instanz für die korrekte Steuerung des Fahrzeugs verantwortlich bleibt und damit bei einem Unfall haftet. Um die Verkehrssicherheit zu erhöhen wird die Vernetzung und der Austausch von Daten zwischen verschiedenen Fahrzeugen notwendig sein. Das angestrebte kooperative Verhalten wird jedoch erst erreicht werden können, wenn entsprechende Standards definiert und die gesetzlichen Grundlagen für die Strassenverkehrsverzulassung angepasst sind.

3.3.2 Mehrwert der Forschungsresultate

3.3.2.1 Mehrwert für A Stab, FST A, HE, LW, LBA, BABS, Blaulichtorganisationen

- Aufzeigen der Auswirkungen technologischer Entwicklungen auf Operationsphilosophie und -planung
- Analyse der Einsatzmöglichkeiten und des Einsatzpotenzials unbemannter Plattformen
- Grundlage zur Erstellung einer künftigen Doktrin für den Einsatz und den Schutz gegen unbemannte Plattformen bzw. Systeme
- Beitrag zur Realisierung des Führungs-, Informations- und Wirkungsverbundes auf Stufe Teilstreit- bzw. Sicherheitskräfte
- Erkennen der Voraussetzungen und Konsequenzen der Integration in den Führungs-, Informations- und Wirkungsverbund
- Aufzeigen der möglichen Konsequenzen neuer Technologien für logistische Unterstützung
- Kompetenzbeiträge zu Fähigkeitslücken gemäss Masterplan Streitkräfte- und Unternehmensentwicklung der Schweizer Armee
3.3.2.2 *Mehrwert für armasuisse*

- Überprüfung der Einsatzmöglichkeiten und des Einsatzpotenzials verschiedener technologischer Entwicklungen im Hinblick auf künftige Beschaffungsvorhaben
- Beurteilungs- und Beschaffungskompetenz für unbemannte mobile Plattformen und Systeme

3.3.3 *Zielsetzungen*

Da der Einsatz von unbemannten Systemen das Mobilitäts- und Aufklärungsspektrum der Streit- und Sicherheitskräfte erweitert und zusätzliche Operationsformen ermöglicht, z.B. die Teilnahme an risikoreicheren Operationen, sollen auch die Konsequenzen für die Doktrinentwicklung aufgezeigt werden. Dabei geht es auch darum, die Entwicklung des Autonomiegrades unbemannter militärischer und ziviler Systeme genau zu beobachten und anhand von Demonstratoren deren Nutzen- und Gefahrenpotenziale aufzuzeigen.

Forschungsbedarf besteht auf vielen Systemebenen und insbesondere auch bezüglich der Gesamtintegration dieser einzelnen Ebenen in einsatzfähige Experimentalsysteme zur Verknüpfung der wissenschaftlichen Forschung mit den operationellen Bedürfnissen. Dabei sollten insbesondere die Anwendungsmöglichkeiten bei der Unterstützung der zivilen Behörden und die daraus resultierenden Herausforderungen berücksichtigt werden.

3.3.3.1 Umsetzungsziele 2017-2020

3.4 Potenzielle Partner – Internationale Zusammenarbeit

3.4.1 Universitäten und Hochschulen

- ETH Zürich, Autonomous Systems Lab, Institut für Automation, Computer Vision Lab und Agile and Dexterous Robotic Lab
- EPF Lausanne, Biorobotics Laboratory, Laboratory of Intelligent Systems
- Universität Zürich, Robotics and Perception Group
- Berner Fachhochschule, Technik und Informatik, Robotics Lab
- ZHAW Winterthur, Institut für mechanische Systeme und Zentrum für Aviatik
- FHNW Windisch, Institut für Automation
- CSEM Neuchâtel
- IDSIA Robotics Lab, Manno
• Forschungszentrum Informatik, Karlsruhe (DEU)
• Southwest Research Institute, San Antonio (USA)

3.3.4.2 Industrie

• RUAG Schweiz AG
• Bluebottics AG, Lausanne
• MineWolf Systems AG, Pfäffikon
• Airbus Defence and Space, Bremen (DEU)
• Diehl BGT Defence, Überlingen (DEU)
• Rheinmetall AG, Düsseldorf (DEU)
• QinetiQ Group plc, Farnborough (UK)
• Dassault Aviation (FRA)
• Insta Group Oy, Tampere (FIN)
• Aurora Flight Sciences, Manassas (USA)
• Black-I Robotics, Tyngsboro (USA)
• iRobot, Bedford MA (USA)

3.3.4.3 Bund

• VBS / GS
• VBS / Verteidigung / FSTA / Kompetenzzentrum ABC-KAMIR der Armee
• VBS / Verteidigung / A Stab
• VBS / armasuisse / KB LU
• VBS / swisstopo

3.3.4.4 Staatliche Partner

• NATO/PfP
• Finnish Defence Forces (FIN)
• Finnish Military Intelligence Centre (FIN)
• Fraunhofer Forschungsinstitut für Kommunikation, Informationsverarbeitung und Ergonomie, Wachtberg (DEU)
• Deutsches Luftwaffennführungskommando - A 7 d (DEU)
• Universität der Bundeswehr, München (DEU)
• Militärische Zulassungsstelle für UAV-Systeme WTD-61 (DEU)
3.4 Innovation und Querschnittsthemen: Technologiefrüherkennung und Technologie-Monitoring

Stichworte

EDA: Informatik & mathematische Anwendungen (A08), Informations- (und Signal)-verarbeitungstechnologie (A09), Defence Analysis (C01), Personal, Ausbildung & Gesundheit (C05), Geschäftszprozesse (C08), R&T Management (C08.8);

3.4.1 Veranlassung und Nutzen

Eine wirksame Technologiefrüherkennung muss Sicherheitskräfte auf neue Technologien und relevante Technologieentwicklungen aufmerksam machen. Mittels Technologie-Monitoring, das einen etwas näheren zeitlichen Horizont als die Technologiefrüherkennung hat, können Sicherheitskräfte beraten werden, ob sie auf eine neue Technologie setzen können oder gar müssen (z. B. Ablösung einer Technologie) und wann der Zeitpunkt dazu ideal ist. Primär geht es darum einerseits nur in reife Technologien zu investieren und andererseits sich abzeichnende Technologiesprünge nicht zu verpassen. Nur so kann der effiziente Einsatz finanzieller Mittel in adäquate Technologien gewährleistet werden.10

9 Militärdoktrin 17, Technologische Trends
10 Teilstrategie Technologie Verteidigung 2020
Um das Risiko von Fehlinvestitionen zu minimieren, müssen Technologie-Beurteilungen bereits in den frühen Planungsphasen einfließen. Dazu sind die aktuellen Trends und Entwicklungen laufend mit einer umfassenden Technologiefrüherkennung und einem spezifisch ausgerichteten Technologie-Monitoring zu beobachten. Der Fokus soll dabei nicht zu eng auf reine Rüstungstechnologien gesetzt werden; zivile Technologien mit Dual-use-Potenzial sind in die Betrachtungen mit einzubeziehen

Dieses Vorgehen hat vor allem mit einem Paradigmenwechsel in der Technologieentwicklung zu tun, welcher sich in den beiden vergangenen Dekaden vollzogen hat. Waren es früher vor allem das Militär und die Weltraumforschung, welche die Technologien vorantrieben und immer nach besserer Ausrüstung strebten, so wird heute das Tempo des technologischen Fortschritts in vielen Bereichen durch den zivilen Markt diktiert. Da immer mehr Technologien sowohl zivile wie auch militärisch nutzbar sind, sind Sicherheitskräfte zunehmend dem Zwang unterworfen, ihre Einsatzmittel dem Stand der Technik ziviler Märkte anzupassen. Dies kann für Sicherheitskräfte aus ökonomischer Sicht durchaus interessant sein. Sehr oft erfüllen jedoch zivile Produkte die Anforderungen von Einsatzkräften nicht, so dass teure Anpassungen notwendig werden, was wiederum zur Konsequenz hat, dass neueste Technologien weniger rasch zum Einsatz kommen als in der zivilen Welt. Während früher Sicherheitskräfte über Ausrüstungen verfügten, die auf den neuesten Technologien beruhnten, scheinen sie heute vermehrt mit einem Technologiezweck konfrontiert zu sein. Dieser Rückstand kann in der Nutzungsphase zu höheren Betriebskosten führen.

Im Rahmen des Forschungsprogramms „Technologiefrüherkennung“ sollen die technologischen Entwicklungen mit Relevanz für staatliche Sicherheitskräfte antizipiert und beschrieben werden. Dabei geht es nicht so sehr darum die technologische Entwicklung zu prognostizieren, sondern eher mit Hilfe eines strukturierten und kontinuierlich vorangetriebenen Ansatzes mögliche Zukunftsszenarien zu skizzieren, mit den Interessierten zu diskutieren und für die Entwicklungs- und Planungsprozesse der Armee bereitzustellen. Die Armee soll rechtzeitig und möglichst genau wissen, welche neuen Technologien auftauchen und wie relevant diese für Rüstungsgüter sein können. Sie muss wissen, ob ein Einstieg auf eine neue Technologie verzeichbar, sinnvoll oder gar notwendig ist.

11 Teilstrategie Technologie Verteidigung 2020
3.4.2 Mehrwert der Forschungsresultate

3.4.2.1 Mehrwert für VBS, A Stab, CdA, IBV, EDA
- Beratung und Unterstützung in Technologiefragen
- Aufzeigen der Verbindung von operationellen Fähigkeiten der Armee zu Technologien
- Aufzeigen des Reifegrads einer Technologie
- Verfassen von Technologieberichten und Präsentation der Erkenntnisse an Veranstaltungen
- Organisation von Thementagen
- Sicherstellung der Technologieexpertise in verschiedenen Schweizer Delegationen
- Führung des Antizipationsprozesses über neue Technologien und deren Konsequenzen auf die Sicherheitskräfte der Schweiz
- Entwicklung von Kenntnissen und Werkzeugen zur Prioritätensetzung von Technologien
- Betrieb einer Plattform mit strukturierter Ablage von Technologieinformationen
- Unabhängige Beratung in verschiedenen Technologiebereichen

3.4.2.2 Mehrwert für armasuisse
- Übersicht über verschiedene Zukunftstechnologien und deren Reifegrad
- Identifikation von Technologien, welche heute in armasuisse W+T noch nicht bearbeitet werden
- Technologische Wissensbasis zur Anpassung, Beendigung oder Start eines Forschungsprogramms
- Integration von integrierten Kreisen in den Prozess der technologischen Antizipation
- Entwicklung einer spezifischen Technologiefrüherkennung für die Schweizer Sicherheitskräfte.

3.4.3 Zielsetzungen
Bis anhin fand der Technologiefrüherkennungs- und die Technologie-Monitoring-Prozess der armasuisse im Rahmen der laufenden Forschungsprogramme und der darin bearbeiteten Themen statt. Das Ziel einer umfassenden Früherkennung und eines entsprechenden Monitorings von Technologieentwicklungen ist die Konsolidierung der Informationen aus den laufenden Forschungsprogrammen und die Identifikation von Technologien, welche sich thematisch ausserhalb der Ausrichtung laufender Forschungsprogramme befinden, aber dennoch relevant für die Aufgabenfülle von Sicherheitskräften werden könnten. Der Fokus bei der Technologiefrüherkennung richtet sich auf Technologien, die sowohl im zivilen wie militärischen Umfeld ein Disruptionspotenzial besitzen.

Für den effizienten Aufbau einer objektiven 360°-Technologieübersicht ist ein Netzwerk mit nationalen und internationalen Kontakten und Partnerorganisationen unabdingbar. Solche Netzwerke sind sehr nützlich, weil die meisten interessanten Technologien per se ziemlich universell betrachtet werden können, auch wenn deren Implementierung auf nationaler Ebene sehr unterschiedlich sein kann. Ein Netzwerk hilft innert vernünftiger Zeit zu nützlichen...
Informationen zu kommen, um diese anschliessend hinsichtlich Qualität und Verlässlichkeit bewerten zu können.

Wie eine erste Analyse zeigt, gibt es einige öffentlich zugängliche Studien aus verschiedenen Ländern in sehr guter Qualität. Im Rahmen der Technologiefrüherkennung sollen aktuelle Studien, welche sich mit Antizipation und Entwicklung von Zukunftsperspektiven befassen, analysiert und ausgewertet werden. Um die Auswirkungen auf Gesellschaft, Ökonomie etc. besser verstehen zu können, beschränkt man sich dabei nicht nur auf die rein technische Perspektive, sondern versucht abzuleiten, welche Konsequenzen die Entwicklung auf die operationellen Fähigkeiten von Sicherheitskräften haben. Es sollen Aussagen bezüglich des Reifegrads einer Technologie formuliert und ihr disruptives Potenzial abgeschätzt werden.

Die Erkenntnisse aus der Technologiefrüherkennung werden in Form von Workshops, Präsentationen, Berichten oder per Internet einem interessierten Publikum aus dem VBS zur Verfügung gestellt, damit die Diskussion über die Relevanz einer Technologie geführt werden kann und um Vorteile bzw. neue Bedrohungen für Schweizer Sicherheitskräfte aufzuzeigen.

Der Aufbau eines zentralisierten Informationssystems auf der Basis einer semantischen Datenstruktur soll künftig inhalts- und kontextorientierte Recherchen ermöglichen und so die Informationssüle handhabbar und nutzbar machen. Bei Bedarf können den operationellen Fähigkeiten der Armee entsprechende Technologien zugeordnet werden. Daraus muss abgeleitet werden können, welche Technologien aufgrund der Priorisierung von operationellen Fähigkeiten an Relevanz für das Technologiemanagement und die Beschaffung gewinnen, aber auch welche operationellen Fähigkeiten durch Technologieentwicklungen am meisten betroffen sind und allenfalls neu beurteilt werden müssen.
3.4.4 Potenzielle Partner – Internationale Zusammenarbeit

3.4.4.1 Universitäten und Hochschulen
- ETH Zürich, Center for Security Studies
- EPF Lausanne

3.4.4.2 Industrie
- Quantinum AG, Bern
- Centredoc, Neuenburg
- Gottlieb Duttweiler Institute (GDI), Zürich
- Effizienzagentur Schweiz AG, Muttenz
- Strategic Business Insights Ltd, London (UK)
- Envisioning Ltd, Sao Paolo (BRA)
- RAND Europe, Cambridge (UK)

3.4.4.3 Bund
- VBS / Verteidigung / A Stab / Doktrin
- VBS / Verteidigung / A Stab / Armeeplanung
- VBS / GS-VBS / Verteidigung und Rüstungspolitik
- EDA / STS-EDA / Rüstungskontrolle und Abrüstung
- WBF / SBFI / Internationale Beziehungen (Swissnex)

3.4.4.4 Staatliche Partner
- Fraunhofer Institut für Naturwissenschaftlich-Technische Trendanalysen, Euskirchen (DEU)
- NATO/PfP STO
- European Defence Agency (EDA)
3.5 Innovation und Querschnittsthemen: Komplexität und Human Factors

Stichworte:

EDA: Informatik & mathematische Anwendungen (A08), Informations- und Signalverarbeitung (A09), Humanwissenschaften (A10), Simulatoren, Übungssysteme & Künstliche Umgebungen (B08), Defence Analysen (C01), Geschäftsprozesse & Managementthemen (C08);

3.5.1 Veranlassung und Nutzen

Die Schweizer Armee, als auch die mit ihr gekoppelten Beschaffungsorganisation, können als soziotechnische Systeme betrachtet werden, die in ihrem jeweiligen VUKA-Umfeld ihre fähigkeitsbasierte Leistung erbringen müssen.

Zur Unterstützung dieser Organisationen müssen bei der Betrachtung soziotechnischer Systeme drei Schwerpunkte gesetzt werden:

1. Komplexitätsmanagement
2. Resilienz
3. Human Factors

Komplexitätsmanagement: Sowohl die Armee wie auch die armasuisse sind vermehrt mit Situationen konfrontiert, in denen einfache, lineare Lösungsansätze nicht mehr zielführend sind. So müssen beispielsweise bei der Beschaffung, Inbetriebnahme und Integration eines Systems neben den rein technischen Aspekten auch politische, wirtschaftliche, gesellschaftliche und rechtliche Gegebenheiten berücksichtigt werden. Das Komplexitätsmanagement stellt Methoden zur Verfügung, sich in diesem Kontext zu orientieren, die Konsequenzen möglicher Lösungsvarianten transparent aufzuzeigen und so die Entscheidungsfindung zu unterstützen.

- Mensch-Maschinen Schnittstelle: Optimierung der Schnittstellen, welchen die menschlichen Akteure ausgesetzt sind. Dabei werden die Kontaktpunkte zwischen Mensch und Hardware, Software, Prozesse und Verfahren betrachtet. Durch eine optimale Abstimmung lässt sich das Risiko menschlichen Versagens und den damit verbundenen Kon-

3.5.2 Mehrwert der Forschungsresultate

3.5.2.1 Mehrwert für A Stab, FUB, LBA, HE, LW, BABS

- Beurteilung der Auswirkungen neuer Technologien und wissenschaftlicher Erkenntnisse auf Operationsplanung sowie auf militärische Fähigkeiten
- Wirtschaftlichkeitsbetrachtungen auf dem gesamten TUNE-Prozess
- Unterstützung der strategischen Planung und Konzeptentwicklung
- Unterstützung der vernetzten Operationsführung im gesamten SVS
- Kompetenzbeiträge zu Fähigkeitslücken gemäß Masterplan Streitkräfte- und Unternehmensentwicklung der Schweizer Armee
- Grundlagen für Doktrinentwicklung und Einsatzunterstützung
- Beschleunigung komplexer Entscheidungsprozesse
- Optimierung von Mensch-Maschine-Schnittstellen
- Wissenschaftliche Entscheid- und Beratungskompetenz am Fliegerärztlichen Institut der Luftwaffe
- Steigerung der Sicherheit und Effektivität militärischer Geräte durch nachhaltige Beurteilung von Human Factors in der Ausbildung und im Einsatz
- Gestaltung resilierter Strukturen in Einsatzverbänden

3.5.2.2 Mehrwert für armasuisse

- Gestaltung komplexer Beschaffungsprozesse
- Bereitstellen systemanalytischer Grundlagen zur Beurteilung von Beschaffungsoptionen
- Simulationsbasiertes System Engineering
- Unterstützung bei der Beurteilung und Optimierung der Mensch-Maschine-Schnittstelle bei Beschaffungsvorhaben
- Grundlagen für ergonomiche Anforderungen an künftige technische Systeme
- Berücksichtigung von Human Factors bei der Innovation und Entwicklung von Technologie Demonstratoren
3.5.3 Zielsetzungen

Im Zentrum dieses Themenfelds steht der handelnde Mensch innerhalb eines sozio-technischen Systems. Sicherheitskräfte sind komplexe adaptive Systeme, welche sich in einem VUKA-Umfeld stets neu anpassen müssen. Komplexitätsmanagement unterstützt die Gestaltung hierfür geeigneter Prozess, Produkte und Strukturen. Für diese Gestaltung brauchen Organisationen die vier Grundelemente der Adaption:

- **Fitness**: Organisationen verfügen über interne Modelle, betreffend Erfolg und Misserfolg im Kontext ihrer Umweltsituation (VUKA-Umfeld)
- **Variation**: Organisationen sind in der Lage eine Vielzahl von Zuständen anzunehmen
- **Selektion**: Organisationen beabsichtigen die Variationen der Zustände beizubehalten, die einen Erfolg wahrscheinlich machen, respektive Zustände zu meiden, die einen Misserfolg erwarten lassen
- **Evaluation**: Organisationen verfügen über Rückkopplungsmechanismen zur Beurteilung ihres Fitnessgrades

3.5.3.1 Umsetzungsziele 2017-2020

3.5.4 Potenzielle Partner – Internationale Zusammenarbeit

3.5.4.1 Universitäten und Hochschulen

- ETH Zürich, MILAK, Birmensdorf
- Universität St. Gallen, Centre for Security, Economy and Technology, St. Gallen
- ZHAW, Zentrum für Aviatik, Winterthur
- Universität der Bundeswehr München, Institut für Theoretische Informatik, Mathematik und Operations Research, München,
- Universität der Bundeswehr Hamburg, Institut für Arbeits-, Organisations- und Wirtschaftspychologie, Hamburg (DEU)
- Cranfield University, Centre for Simulation and Analytics, Shrivenham (UK)
- Naval Postgraduate School, Monterey (USA)
- National Defence University Washington D.C. (USA)

3.5.4.2 Industrie

- RUAG Schweiz AG, Bern
- Forventis GmbH, Zürich
- Zentrum für Arbeitsmedizin, Ergonomie und Hygiene (AEK) AG, Zürich
- Stiftung Risiko-Dialog, St. Gallen
- Die Ergonomen Usability AG, Zürich
- IABG, Ottobrunn (DEU)
- Elektroniksystem und Logistik GmbH, München (DEU)
- Airbus Defence and Space, Bremen (DEU)
- Institut für Technik intelligenter Systeme – ITIS GmbH, Deutschland (DEU)
- CAE GmbH, Stolberg (DEU)
- RAND Europe, Cambridge (UK)

3.5.4.3 Bund

- VBS / BABS / Risikogrundlagen und Forschungskoordination
- VBS / Verteidigung / Luftwaffe / Fliegerärztliches Institut FAI

3.5.4.4 Staatliche Partner

- Bundesministerium für Verteidigung, Planungsamt der Bundeswehr, Berlin (DEU)
- Bundesheer, Amt für Rüstung und Wehrtechnik, Wien (AUT)
- Deutsches Zentrum für Luft- und Raumfahrt DLR, Oberpfaffenhofen (DEU)
- Fraunhofer Institut für Techno- und Wirtschaftsmathematik, Kaiserslautern (DEU)
- Ministry of Defence, Defence Science and Technology Laboratory, Porton Down (UK)
- NATO Communications and Information Agency, Operational Analysis, Brüssel (BEL)
3.6 Innovation und Querschnittsthemen: Materialwissenschaft und Energie

Stichworte

EDA: Strukturelle & intelligente Werkstoffe & Strukturmechanik (A01), Elektronische Anwendungen (A03), Elektronische, elektrische & elektromechanische Anwendungen (A05), Energetische Materialien & Plasma Technologien (A06), Chemische, biologische und medizinische Anwendungen (A07), Schadenswirkung und Schutz (B01), Energie- und Antriebstechnik (B02), Herstellungsprozesse, Konstruktionswerkzeuge & -techniken (B12);

3.6.1 Veranlassung und Nutzen

Die Anforderungen hinsichtlich des Energiebedarf von Systemen und Plattformen erhöhen sich in der Regel durch zusätzliche elektronische Komponenten. Dies führt bei mobilen Platt-

Aktivitäten und Auswirkungen, die wesentlich von Energieerzeugung, -speicherung und -verbrauch abhängig sind, müssen unter dem Gesichtspunkt der missionsorientierten Fähigkeiten der Einsatzkräfte und ihrer Ausrüstung betrachtet werden. Folgende Themen sind hinsichtlich Energieversorgung für die Optimierung der operationellen Fähigkeiten der Einsatzkräfte von besonderer Bedeutung:

- Energieversorgungskette und -vernetzung, Versorgungssicherheit und Schutz
- Herausforderungen für operationelle Fähigkeiten bei Energiemangel
- Energieeffizienz
- Energiespeicher
- Alternative und autarke Energiegewinnung

3.6.2 Mehrwert der Forschungsresultate

3.6.2.1 Mehrwert für A Stab, FUB, LBA, HE, LW

- Einsatzmöglichkeiten und Entwicklungspotenzial moderner Werkstofftechnologien
- Grundlagen und Erkenntnisse für die Überprüfung und Weiterentwicklung von Doktrin, Planung, Einsatzkonzepten und Einsatzlogistik der Armee
- Beurteilung der Auswirkungen neuer Erkenntnisse aus der Materialwissenschaft für das Lebenswegmanagement und die Lebenswegkosten
- Kompetenzbeiträge zu Fähigkeitslücken gemäss Masterplan Streitkräfte- und Unternehmensentwicklung der Schweizer Armee

3.6.2.2 Mehrwert für armasuisse

- Expertisen für Beschaffungsvorhaben inkl. Kostensenkung
- Optimierung von technischen Systemen mittels Anwendung neuer Werkstoffe und Prüfverfahren
- Beurteilung von Zuverlässigkeit, Sicherheit, Schadensfällen, Versagenswahrscheinlichkeit und -mechanismen
- Grundlagen für die Prüfung neuer Technologien in systemanalytischen Modellen
- Grundlagen für eine umfassendere Sicherstellung der technisch-wissenschaftlichen Kompetenzen bei Forschungstätigkeiten und die Förderung von Innovationen bei der Entwicklung entsprechender Technologiedemonstratoren
3.6.3 Zielsetzungen

3.6.3.1 Umsetzungsziele 2017-2020

Anwendungsorientierte Forschungstätigkeiten für Innovationen und Technologien in den Bereichen Materialwissenschaft und Energie werden in der Regel im Rahmen der Forschungsprogramme und Technologiedemonstratoren zu den beiden Forschungsschwerpunkten „Technologien für operationelle Fähigkeiten“ und „Technologieintegration für Einsatzsysteme“ durchgeführt.
3.6.4 Potenzielle Partner – Internationale Zusammenarbeit

3.6.4.1 Universitäten und Hochschulen

- ETH Zürich, Functional Genomics Center
- EPF Lausanne, Institut für Mikro- und Nanotechnologie
- Berner Fachhochschule, Technik und Informatik, Burgdorf und Biel
- Universität Bern, Institut für Infektionskrankheiten

3.6.4.2 Industrie

- RUAG Schweiz AG, Bern
- Impreglon AG, Altdorf
- Airbus Defence AG, Ulm (DEU)

3.6.4.3 Bund

- EMPA, Werkstofftechnologie, Thun
- VBS / BABS / Labor Spiez
- Bundesamt für Energie BFE
- Paul Scherrer Institut (PSI)

3.6.4.4 Staatliche Partner

- Fraunhofer-Institut für Materialfluss und Logistik, Dortmund (DEU)
- Institut franco-allemand de recherche pour la défense, Saint-Louis (FRA/DEU)
4 Finanzierung 2017 – 2020

4.1 Folgen der Umsetzung der Sparmassnahmen im Rahmen KAP 2014

5 Akteure und Schnittstellen

5.1 Beschreibung der wichtigsten Akteure

Der Aufbau von Kompetenzen zur Sicherstellung der Expertisefähigkeit für Sicherheitskräfte im Rahmen eines Netzwerks muss strategisch und nachhaltig erfolgen. Die Partnerschaft wird mittel- bis langfristig ausgelegt und basiert neben den Grundkompetenzen der Forschungsinstitution auf gemeinsamen inhaltlichen Interessen, insbesondere für Technologien, welche bei Sicherheitskräften Anwendungspotenzial haben.

Neben den beiden Eidgenössischen Technischen Hochschulen in Zürich und Lausanne sind die Universitäten Zürich und Bern, sowie verschiedene Fachhochschulen wichtige Forschungs partner. Im Rahmen des Forschungsschwerpunkts „Technologieintegration für Einsatzsysteme“ spielt der RUAG-Konzern als Industriepartner eine wichtige Rolle, wobei zunehmend auch Firmen ins Kompetenznetzwerk integriert werden sollen, welche in der Schweiz über eigene Forschungs- und Entwicklungsabteilungen in relevanten Technologiebereichen verfügen.

5.2 Schnittstellen zu anderen Bundesämtern

Der Koordinationsausschuss-Ressortforschung (RF) unterhält eine Arbeitsgruppe, welche sich hauptsächlich aus den Forschungsverantwortlichen der im Ausschuss vertretenen Ämter zusammensetzt. Prozesse zum Ausloten von Möglichkeiten zur Zusammenarbeit erfolg
5.3 Internationale Zusammenarbeit

6 Organisation und Qualitätssicherung

6.1 Interne Organisation

Ausgehend von den geplanten Forschungsschwerpunkten und den prioritären Themenbereichen des vorliegenden LFP’s werden Forschungsprogramme definiert, welche sich auf die erforderlichen und zukünftigen Fähigkeiten von Sicherheitskräften ausrichten. Forschungsprogramme werden durch designierte Forschungsprogrammleiter geführt, welche mittels systematischen Bedarfsanalysen bei den relevanten Anspruchsgruppen die Inhalte ihrer Programme priorisieren, präzisieren und für eine fähigkeitsorientierte Ausrichtung sorgen. Für die strategisch korrekte Ausrichtung des Programmportfolios sorgt die Forschungsaufsicht, welche aus Vertretern des Armeestabs und armasuisse W+T zusammengesetzt ist.

6.2 Externe Beratung durch die wissenschaftliche Begleitkommission

Für die Erstellung des langfristigen Forschungsplanes 2017-2020 wurden unabhängige, externe Fachexperten, eine interne wissenschaftliche Begleitkommission und die vertretlichen Kontakstellen (POC) für die Departementsbereiche Verteidigung und armasuisse beigezogen. Die Experten unterstützten die federführende Stelle bei der Erstellung und Umsetzung des Forschungsplanes bei folgenden Aktivitäten:

- Überblick über den aktuellen Stand der Forschung
- Beurteilung von Relevanz und Aktualität der Forschungsthemen und Prioritätensetzung
- Informationsplattform für Betroffene und interessierte Nutznießer
- Identifikation von Kooperationspotenzialen mit Bundesinstitutionen, Hochschulen, Förderinstitutionen und Industrie
- Sicherung der wissenschaftlichen Qualität der vorgeschlagenen Forschungsvorhaben
- Evaluation der einzelnen Forschungsprogramme und Forschungsprojekte

6.3 Qualitätssicherung (Ziele neue Periode)

Innerhalb der armasuisse wurden in der Periode 2012-2016 folgende Qualitätssicherungsmaßnahmen umgesetzt:

- Das wesentliche Ziel der Forschung, nämlich der rechtzeitige Aufbau von technisch-wissenschaftlichen Kompetenzen zur Erstellung von Expertisen zugunsten von Sicherheits-
kräftigen, wurde im Rahmen der FLAG-Wirkungsevaluation erhoben und Massnahmen umgesetzt.

- Durch die Lancierung des Forschungsprogramms „Technologiefrüherkennung“ werden künftig neue technologiebasierte Bedrohungsformen und Chancen systematisch und frühzeitig identifiziert. Trends werden hinsichtlich der Relevanz für Sicherheitskräfte beurteilt und Massnahmen u.a. für die inhaltliche Ausrichtung der Forschung abgeleitet.
- Der gezielte Aufbau von Experten- und Wissensnetzwerken fördert den Wissensaustausch innerhalb des VBS und mit externen Forschungspartnern systematisch. Dabei werden Doppelspurigkeiten vermieden und die fachliche Koordination sichergestellt.
- Die wissenschaftliche Qualität der Forschung wird sichergestellt, indem vorzugsweise mit Forschungspartnern zusammenarbeitet wird, welche auf internationaler Ebene in der Forschungsgemeinschaft über einen guten Namen und über eine hohe Präsenz in einschlägigen Fachzeitschriften und an Konferenzen verfügen.
- Forschungsarbeiten werden mit internen und externen wissenschaftlich tätigen Experten diskutiert, so dass die Qualität der Forschungsresultate durch Zweit- und Drittmeinungen verifiziert werden kann.

Für die Periode 2017-2010 sind folgende Massnahmen vorgesehen:

- Die erwähnten Qualitätssicherheitsmassnahmen werden beibehalten bzw. fortgeführt.
- Die rechtzeitige Verfügbarkeit der Expertisekompetenz, eine Hauptzielseitung der Forschung wird im Rahmen der NFB13-Wirkungszielevaluation erhoben und hinsichtlich Erreichungsgrad beurteilt.
- Für die Gewährleistung eines gezielten Aufbaus von Wissensnetzwerken werden potenzielle Forschungspartner systematisch evaluier.
- Die wissenschaftliche Qualität der Arbeiten soll mit Hilfe eines Bewertungssystems überprüft werden.

12 IPMA: International Project Management Association
13 NFB: Neues Führungsmodell Bund
6.4 Verbreitung des Wissens

Um einen steten Wissenstransfer und eine optimale Nutzung des erarbeiteten Wissens und der neuen Erkenntnisse zu erreichen, werden die Forschungsresultate möglichst breit zugänglich gemacht. Diese werden in Form von Forschungsberichten und anlässlich verschiedener Veranstaltungen wie Forschungsrapporte, Workshops, Projektpräsentationen, Informationstagungen und Symposien kommuniziert. Innerhalb der armasuisse stehen die Berichte auch auf einer Datenbank zur Verfügung, welche eine Volltextsuche und einen unmittelbaren Zugriff auf die Originaldokumente zulässt.

Aufgrund des Umstands, dass Forschungsprojekte grösstenteils durch Mitarbeitende in der Linienorganisation geführt werden, welche auch an der Erstellung von Expertisen beteiligt sind, erfolgt der Wissenstransfer in vielen Fällen unmittelbar, ohne dass dazu spezielle interne Massnahmen getroffen werden müssen.
Anhang

Anhang 1: Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Bedeutung</th>
<th>Abkürzung</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D</td>
<td>Drei-Dimensional</td>
<td>CCDCoE</td>
<td>Cooperative Cyber Defence Centre of Excellence</td>
</tr>
<tr>
<td>A Stab</td>
<td>Armeestab</td>
<td>CD&E</td>
<td>Concept Development and Experimentation</td>
</tr>
<tr>
<td>ABC</td>
<td>Atomar Biologisch Chemisch</td>
<td>CH</td>
<td>Confoederatio Helvetica</td>
</tr>
<tr>
<td>ACOUSTICINT</td>
<td>Acoustic Intelligence</td>
<td>CHF</td>
<td>Schweizer Franken</td>
</tr>
<tr>
<td>AESA</td>
<td>Active Electronically Scanned Array</td>
<td>CND</td>
<td>Computer Network Defence</td>
</tr>
<tr>
<td>AFP</td>
<td>Aktionsführungsprozess</td>
<td>CNO</td>
<td>Computer Network Operations</td>
</tr>
<tr>
<td>AG</td>
<td>Aktiengesellschaft</td>
<td>CONOPS</td>
<td>Concept of Operations</td>
</tr>
<tr>
<td>AG SKI</td>
<td>Arbeitsgruppe Schutz kritischer Infrastrukturen</td>
<td>COTS</td>
<td>Commercial of-the-shelf</td>
</tr>
<tr>
<td>APP</td>
<td>Aktionsplanungsprozess</td>
<td>CSEM</td>
<td>Centre Suisse d'Electronique et de Microtechnique</td>
</tr>
<tr>
<td>ar</td>
<td>armasuisse</td>
<td>DACH</td>
<td>Deutschland, Österreich, Schweiz</td>
</tr>
<tr>
<td>ARE</td>
<td>Bundesamt für Raumentwicklung</td>
<td>DEU</td>
<td>Deutschland</td>
</tr>
<tr>
<td>ASIK</td>
<td>Abteilung Sicherheitspolitik und Krisenmanagement</td>
<td>DEZA</td>
<td>Direktion für Entwicklung und Zusammenarbeit</td>
</tr>
<tr>
<td>ASTRA</td>
<td>Bundesamt für Strassen</td>
<td>DLR</td>
<td>Deutsches Zentrum für Luft- und Raumfahrt</td>
</tr>
<tr>
<td>AÜP</td>
<td>Aufgaben Überprüfsungs Programm (des Bundes)</td>
<td>DMTI</td>
<td>Dismount Moving Target Indication</td>
</tr>
<tr>
<td>AUT</td>
<td>Austria (Österreich)</td>
<td>DUOAMPFIS</td>
<td>Doktrin, Unternehmung, Organisation, Ausbildung, Material, Personal, Finanzen, Information, Sicherheit</td>
</tr>
<tr>
<td>BABS</td>
<td>Bundesamt für Bevölkerungsschutz</td>
<td>DWA</td>
<td>Eidgenössisches Amt für auswärtige Angelegenheiten</td>
</tr>
<tr>
<td>BAFU</td>
<td>Bundesamt für Umwelt</td>
<td>EDA</td>
<td>European Defence Agency</td>
</tr>
<tr>
<td>BAG</td>
<td>Bundesamt für Gesundheit</td>
<td>EKF</td>
<td>Elektronische Kriegsführung</td>
</tr>
<tr>
<td>BASPO</td>
<td>Bundesamt für Sport</td>
<td>EM</td>
<td>Elektromagnetisch</td>
</tr>
<tr>
<td>BFE</td>
<td>Bundesamt für Energie</td>
<td>EMP</td>
<td>Elektromagnetischer Puls</td>
</tr>
<tr>
<td>BFS</td>
<td>Bundesamt für Statistik</td>
<td>EMPA</td>
<td>Eidgenössische Material Prüfungs Anstalt</td>
</tr>
<tr>
<td>BSV</td>
<td>Bundesamt für Sozialversicherungen</td>
<td>EMV</td>
<td>Elektromagnetische Verträglichkeit</td>
</tr>
<tr>
<td>BV</td>
<td>Bundesverfassung</td>
<td>EDA</td>
<td>European Defence Agency</td>
</tr>
<tr>
<td>BWL</td>
<td>Bundesamt für Landwirtschaft</td>
<td>EM</td>
<td>Elektromagnetisch</td>
</tr>
<tr>
<td>C4I</td>
<td>Command, Control, Communications Computers, and Intelligence</td>
<td>EMP</td>
<td>Elektromagnetischer Puls</td>
</tr>
<tr>
<td>C4ISTAR</td>
<td>Command, Control, Communications Computers, Informations, Surveillance, Target Acquisition and Reconnaissance</td>
<td>EMPA</td>
<td>Eidgenössische Material Prüfungs Anstalt</td>
</tr>
<tr>
<td>CAS</td>
<td>Complex Adaptive Systems</td>
<td>EMV</td>
<td>Elektromagnetische Verträglichkeit</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Bedeutung</td>
<td>Abkürzung</td>
<td>Bedeutung</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>EOD</td>
<td>Explosive Ordnance Disposal</td>
<td>IKT</td>
<td>Informations- und Kommunikationstechnologien</td>
</tr>
<tr>
<td>EPF</td>
<td>Ecole Polytechnique Fédéral</td>
<td>IMINT</td>
<td>Image Intelligence</td>
</tr>
<tr>
<td>ESP</td>
<td>Espania (Spanien)</td>
<td>IMS</td>
<td>Integriertes Management-</td>
</tr>
<tr>
<td>ETH</td>
<td>Eidgenössische Technische Hochschule</td>
<td>inkl.</td>
<td>inclussive</td>
</tr>
<tr>
<td>EVA</td>
<td>Europäische Verteidigungs Agentur</td>
<td>IOSB</td>
<td>Institut für Optronik, System-</td>
</tr>
<tr>
<td>FAI</td>
<td>Fliegerärztliches Institut der Luftwaffe</td>
<td>IPMA</td>
<td>technik und Bildauswertung (Deutschland)</td>
</tr>
<tr>
<td>FedPol</td>
<td>Federal Police (Bundespolizei)</td>
<td>ISchV</td>
<td>Informationsschutzverordnung</td>
</tr>
<tr>
<td>FHNW</td>
<td>Fachhochschule Nordwestschweiz</td>
<td>ISTAR</td>
<td>Intelligence, Surveillance, Target Acquisition and Reconnaissance</td>
</tr>
<tr>
<td>FiBL</td>
<td>Forschungsinstitut für biologischen Landbau</td>
<td>ITA</td>
<td>Italien</td>
</tr>
<tr>
<td>FIFG</td>
<td>Forschungs- und Innovationsförderungsgesetz</td>
<td>KAMIR</td>
<td>Kampfmittelräumung</td>
</tr>
<tr>
<td>FLAG</td>
<td>Führen mit Leistungsauftrag und Globalbudget</td>
<td>KAP</td>
<td>Konsolidierungs- und Ausgabenüberprüfungspaket</td>
</tr>
<tr>
<td>FSP</td>
<td>Forschungsschwerpunkt</td>
<td>KTI</td>
<td>Kommission für Technologie und Innovation</td>
</tr>
<tr>
<td>FST A</td>
<td>Führungsstab der Armee</td>
<td>LBA</td>
<td>Logistikbasis der Armee</td>
</tr>
<tr>
<td>FUB</td>
<td>Führungsunterstützungsbasis</td>
<td>LCC</td>
<td>Life Cycle Costs</td>
</tr>
<tr>
<td>GmbH</td>
<td>Gesellschaft mit beschränkter Haftung</td>
<td>LFP</td>
<td>Langfristiger Forschungsplan</td>
</tr>
<tr>
<td>GPK-N</td>
<td>Geschäftsprüfungskommision des Nationalrates</td>
<td>LGS</td>
<td>Leistungserbringendes Gesamtsystem</td>
</tr>
<tr>
<td>GS</td>
<td>Generalsekretariat</td>
<td>LW</td>
<td>Luftwaffe</td>
</tr>
<tr>
<td>HAP</td>
<td>High Altitude Platform</td>
<td>MASINT</td>
<td>Measurement and Signature Intelligence</td>
</tr>
<tr>
<td>HE</td>
<td>Heer</td>
<td>MD</td>
<td>Militärdoktor</td>
</tr>
<tr>
<td>HEIG VD</td>
<td>Haute Ecole d'Ingénierie et de Gestion du Canton de Vaud</td>
<td>MELANI</td>
<td>Melde- und Analysestelle Informationssicherung</td>
</tr>
<tr>
<td>HEST</td>
<td>Heeresstab</td>
<td>MG</td>
<td>Militärgesetz</td>
</tr>
<tr>
<td>HFACS</td>
<td>Human Factors Analysis and Classification System</td>
<td>MILAK</td>
<td>Militär Akademie</td>
</tr>
<tr>
<td>HKA</td>
<td>Höhere Kaderausbildung</td>
<td>miiCERT</td>
<td>Military Computer Emergency Response Team</td>
</tr>
<tr>
<td>HPE</td>
<td>High Power Electromagnetics</td>
<td>MIMO</td>
<td>Multiple In Multiple Out</td>
</tr>
<tr>
<td>HPM</td>
<td>High Power Microwaves</td>
<td>Mio</td>
<td>Millonen</td>
</tr>
<tr>
<td>HUMINT</td>
<td>Human Intelligence</td>
<td>MND</td>
<td>Militärischer Nachrichtendienst</td>
</tr>
<tr>
<td>IAFP</td>
<td>Integrierte Aufgaben und Finanzplanung</td>
<td>MOTS</td>
<td>Military of-the-shelf</td>
</tr>
<tr>
<td>IDSIA</td>
<td>Istituto Dalle Molle di Studi sull’Intelligenza Artificiale</td>
<td>MSA</td>
<td>Materielle Sicherstellung der Armee</td>
</tr>
<tr>
<td>IED</td>
<td>Improvised Explosive Device</td>
<td>NASA</td>
<td>National Space Agency</td>
</tr>
<tr>
<td>IFF</td>
<td>Identification Friend Foe</td>
<td>NATO</td>
<td>North Atlantic Treaty Organization</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NATO/PiP STO</td>
<td>NATO/PiP Science and Technology Organisation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NAZ</td>
<td>Nationale Alarmzentrale</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NDB</td>
<td>Nachrichtendienst des Bundes</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Bedeutung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NFB</td>
<td>Neues Führungsmodell Bund Nationale Forschungsprogramme</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NFP</td>
<td>Nationale Forschungsschwerpunkte</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NFS</td>
<td>Nicht-Ionisierende Strahlung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NIS</td>
<td>Non-Lethal Weapons</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OA</td>
<td>Operationelle Fähigkeiten</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OFä</td>
<td>Operations Research</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OSINT</td>
<td>Open Source Intelligence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OV</td>
<td>Organisationsverordnung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIP</td>
<td>Partnership for Peace</td>
<td></td>
<td></td>
</tr>
<tr>
<td>POC</td>
<td>Point of Contact</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSI</td>
<td>Paul-Scherrer Institut</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTI</td>
<td>(Kommission für) Polizei, Technik und Informatik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RADINT</td>
<td>Radar Intelligence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RF</td>
<td>Ressortforschung (des Bundes)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RNDÁ</td>
<td>Reglement Nachrichtendienst der Armee</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RPAS</td>
<td>Remotely Piloted Aerial Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAF</td>
<td>Südafrika</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAR</td>
<td>Synthetic Aperture Radar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SATINT</td>
<td>Satellite Intelligence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SBFI</td>
<td>Staatssekretariat für Bildung, Forschung und Innovation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiK-S</td>
<td>Sicherheitspolitische Kommission des Ständerats</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SLO</td>
<td>Slovenien</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNF</td>
<td>Schweizerischer Nationalfonds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOA</td>
<td>Service Oriented Architecture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOCMINT</td>
<td>Social Media Intelligence</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>STA</td>
<td>Schweizerische Gesellschaft für Technik und Armee</td>
</tr>
<tr>
<td>STIB</td>
<td>Sicherheitsrelevante Technologie- und Industriebasis</td>
</tr>
<tr>
<td>SUPSI</td>
<td>Scuola Universitaria Professionale della Svizzera Italiana</td>
</tr>
<tr>
<td>SWE</td>
<td>Schweden</td>
</tr>
<tr>
<td>SWIR</td>
<td>Schweizerischer Wissenschaft- und Innovationsrat</td>
</tr>
<tr>
<td>THz</td>
<td>Terahertz</td>
</tr>
<tr>
<td>TNT</td>
<td>Trinitrotoluol</td>
</tr>
<tr>
<td>TRL</td>
<td>Technology Readiness Level</td>
</tr>
<tr>
<td>u.a.</td>
<td>unter anderem</td>
</tr>
<tr>
<td>UAS</td>
<td>Unmanned Aerial System</td>
</tr>
<tr>
<td>UCAV</td>
<td>Unmanned Combat Aerial Vehicle</td>
</tr>
<tr>
<td>UK</td>
<td>United Kingdom (Vereinigtes Königreich)</td>
</tr>
<tr>
<td>USA</td>
<td>United States of America</td>
</tr>
<tr>
<td>V</td>
<td>Departementsbereich Verteidigung</td>
</tr>
<tr>
<td>VAMAT</td>
<td>Verordnung des VBS über das Armeematerial</td>
</tr>
<tr>
<td>VBS</td>
<td>Departement für Verteidigung, Bevölkerungsschutz und Sport</td>
</tr>
<tr>
<td>VFI</td>
<td>Verordnung des VBS über das Fliegerärztliche Institut</td>
</tr>
<tr>
<td>VISINT</td>
<td>Visual Intelligence</td>
</tr>
<tr>
<td>VUKA</td>
<td>Volatilität, Unsicherheit, Komplexität und Ambiguität</td>
</tr>
<tr>
<td>W+T</td>
<td>Kompetenzbereich Wissenschaft und Technologie von armasuisse</td>
</tr>
<tr>
<td>WEA</td>
<td>Weiterentwicklung der Armee</td>
</tr>
<tr>
<td>WTD</td>
<td>Wehrtechnische Dienststelle (Deutschland)</td>
</tr>
<tr>
<td>z.B.</td>
<td>zum Beispiel</td>
</tr>
<tr>
<td>z. Hd.</td>
<td>Zu Händen</td>
</tr>
<tr>
<td>ZHAW</td>
<td>Zürcher Hochschule für angewandte Wissenschaften</td>
</tr>
</tbody>
</table>

Ident-Nr. AR 40016609255/01 Aktenzeichen 41-01 Seite 84
Anhang 2: Ressortforschung des Bundes

A1. Definition der Forschung der Bundesverwaltung

Die von der Bundesverwaltung initiierte bzw. unterstützte Forschung wird gemeinhin "Ressortforschung" bezeichnet. Es handelt sich dabei um Forschung, deren Ergebnisse von der Bundesverwaltung resp. der Bundespolitik für die Erfüllung ihrer Aufgaben benötigt werden oder im öffentlichen Interesse liegen. Die Ressortforschung liegt damit an der Schnittstelle zwischen der wissenschaftlichen Forschung und der Politik bzw. Praxis. Es handelt sich sowohl um "Forschung in der Politik", welche die wissenschaftliche und technische Dimension in die politische Diskussion einbringt, als auch um "Forschung für die Politik", welche die Grundlagen für die Formulierung der Ziele in den Politikbereichen (s. Kapitel A.3) bereitstellt. Sie wird legitimiert durch das Forschungs- und Innovationsförderungsgesetz FIFG (SR 420.1), welches als Rahmengesetz für die Ressortforschung dient und durch die spezialgesetzlichen Bestimmungen (s. Kapitel A.2). Sie steht im Einklang mit den Strategien der Bundesstellen und kann folgende Massnahmen umfassen:

- den Betrieb bundeseigener Forschungsanstalten (Forschung intra-muros);
- Beiträge an Hochschulforschungsstätten für die Durchführung von Forschungsprojekten und -programmen;
- die Durchführung eigener Forschungsprogramme, namentlich in Zusammenarbeit mit Hochschulforschungsstätten, Forschungsförderungsinstitutionen wie dem Schweizerischen Nationalfonds (SNF), der Kommission für Technologie und Innovation (KTI) oder weiteren Förderorganisationen;
- Beiträge von Bundesstellen an internationale Institutionen und Organisationen für Forschungsprojekte oder -programme;
- die Erteilung von Forschungsaufträgen (Auftragsforschung).

Nicht zur Ressortforschung gehören die Ausgaben der vom Bund finanzierten Hochschulen und Forschungsanstalten des Hochschulbereichs, Beiträge (Subventionen) des Bundes an den SNF, die KTI und an wissenschaftliche Institutionen gemäss FIFG (Akademien, Forschungsinfrastrukturen, -institutionen und Technologiekompetenzzentren etc.) sowie Beiträge an internationale wissenschaftliche Institutionen und Organisationen zur Strukturfinanzierung.

In der Praxis beruht die Ressortforschung auf den fünf Hauptprinzipien der Gesetzmäßigkeit, Zweckmäßigkeit, Wirksamkeit, Wirtschaftlichkeit und Einhaltung der wissenschaftlichen Qualitätsstandards. Die Hauptverantwortung für die Ressortforschung liegt bei den einzelnen Bundesstellen, welche die Forschung entweder selber durchführen, in Auftrag geben oder Beiträge leisten.

14 Totalrevision des FIFG vom 14. Dezember 2012
A2. Gesetzlicher Auftrag

Rahmengesetz

Das Engagement des Bundes in der Forschung und Forschungsförderung wird durch Art. 64 der Bundesverfassung (SR 101) legitimiert, indem der Bund die wissenschaftliche Forschung und die Innovation fördert, bzw. Forschungsstätten errichten, übernehmen oder betreiben kann.

Spezialgesetzliche Grundlagen

Verpflichtungen aus internationalen Vereinbarungen und parlamentarischen Aufträgen

Neben den spezialgesetzlichen Bestimmungen enthalten oder implizieren auch über 90 internationale Verträge, Konventionen oder Mitgliedschaften Verpflichtungen zur Forschung oder zu nationalen Forschungsanstrengungen in den jeweils relevanten Themenfeldern. Aber auch in Fällen, wo keine expliziten Forschungsverpflichtungen aus Verträgen existieren, ist die in Auftrag gegebene Forschung für einige Ämter zentral, um notwendige internationale Kontakte aufrecht erhalten zu können. Die Forschung der Bundesverwaltung ermöglicht so einen Austausch auf der Basis von Fachwissen, dem die eigenen aktuellen wissenschaftlichen Erkenntnisse zugrunde liegen.

Vom Parlament selbst werden durch parlamentarische Initiativen, Motionen, Postulate, Interpellationen oder Anfragen Aufträge zur Erarbeitung von Entwürfen für Erlasses, zur Erarbeitung von Prüfungsberichten und Auskünften erteilt, deren Behandlung Aktivitäten in der Forschung der Bundesverwaltung nach sich ziehen kann.

A3. Koordination der Forschung der Bundesverwaltung

Gliederung der Forschung der Bundesverwaltung in Politikbereiche

Interdepartementaler Koordinationsausschuss für die Ressortforschung

Im Jahr 1997 hatte der Bundesrat im Zuge der Reorganisation des Bereichs "Bildung, Forschung und Technologie" einen Steuerungsausschuss für die Koordination der Ressortforschung eingesetzt. Mit der Totalrevision des FIFG ist dieser Ausschuss seiner Funktion entsprechend als interdepartementaler Koordinationsausschuss (Koordinationsausschuss-RF) nun gesetzlich abgestützt worden.

Aufgaben: Gestützt auf das FIFG hat der Koordinationsausschuss-Ressortforschung namentlich die Aufgaben der Koordination der Forschungskonzepte sowie der Erarbeitung von Richtlinien für die Qualitätssicherung. Des weiteren stellt der Ausschuss die strategische Koordination der Ressortforschung sicher, ist eine aktive Plattform für den Austausch guter Praxen in der Qualitätssicherung, erhebt jährlich den Forschungsaufwand und den Budgetrahmen der Forschungsaktivitäten der Bundesverwaltung für die Berichterstattung im Rahmen der jährlichen Informationsnotiz an den Bundesrat (enthält auch Informationen zu laufenden und geplanten Massnahmen im Bereich der Forschung der Bundesverwaltung wie Evaluationen und Aktivitäten im Zusammenhang mit parlamentarischen Vorstössen, etc.), nimmt Aufgaben wahr bei der Auswahl von Nationalen Forschungsprogrammen (NFP) und Nationalen Forschungsschwerpunkten (NFS), koordiniert zwischen der Ressortforschung und den anderen Instrumenten der orientierten Forschung und kann Evaluationen zu übergeordneten Themen im Bereich der Ressortforschung initiieren.

Arbeitsgruppe und Sekretariat des Koordinationsausschusses-Ressortforschung

Datenbank ARAMIS

Das Informationssystem funktioniert als eine einfache Datenbankanwendung, in welcher alle Forschungsvorhaben und Wirksamkeitsüberprüfungen/Evaluationen der Bundesverwaltung als einzelne oder miteinander verknüpfte Projekte abgebildet werden. ARAMIS dient daher als ein Pfeiler in der Qualitätssicherung der Forschung der Bundesverwaltung und ist entsprechend in den Richtlinien des Koordinationsausschusses-Ressortforschung über die Qualitätssicherung verankert. Für die Unterstützung der Forschungskoordination und -planung sowie für einen effizienten Mitteleinsatz werden auf der Basis von ARAMIS jährlich detaillierte Informationen über die Art der Forschung (intramuros, Forschungsaufträge und -beiträge), die Auftragsnehmer sowie die Aufwände der Ämter im Rahmen der Forschungskonzepte zuhanden des Bundesrates und des Koordinationsausschusses-Ressortforschung zusammengestellt. Damit wird garantiert, dass diese im Hinblick auf die Finanzplanung über die Mittelentwicklung und –einsetzung bei den einzelnen Ämtern informiert sind.
A4. Übergeordnete Ziele in der Periode 2017-2020

Auf der Grundlage des totalrevidierten FIFG und der Empfehlungen im Rahmen der Evaluation der Qualitätssicherung in der Ressortforschung stehen für den Koordinationsausschuss- Ressortforschung folgende Hauptziele in der Periode 2017-2020 im Vordergrund:

- In den Forschungskonzepten für die Politikbereiche werden die Schnittstellen zu den Forschungsschwerpunkten der Hochschulen, den Förderprogrammen des SNF und den Fördertätigkeiten der KTI explizit aufgezeigt. Damit soll die Ressortforschung, wenn sachlich möglich oder erforderlich, an die allgemeine Forschungsförderung angeknüpft werden. Die entsprechenden Programme der Forschungsförderungsinstitutionen oder Hochschulen sollen durch die Forschung der Bundesverwaltung vermehrt genutzt werden.

- Bei der Qualitätssicherung hat der Schweizerische Wissenschafts- und Innovationsrat SWIR Verbesserungspotenzial bei der Verzahnung zwischen Qualitätssicherung und Planung gesehen, welche noch zu wenig konsequent betrieben wird. In den Forschungskonzepten wird die Qualitätssicherung daher explizit mit konkreten Zielen/Massnahmen der am Konzept beteiligten Bundesstellen und Meilensteinen für die jeweilige Planungsperiode thematisiert.

Anhang 3: Wissenschaftliche Begleitkommission

Die externe wissenschaftliche Begleitkommission setzt sich aus folgenden Mitgliedern zusammen:

- Prof. Dr. Stefan Pickl, Universität der Bundeswehr, München
- Prof. Dr. Max Krüger Hochschule Furtwangen, Furtwangen
- Prof. Dr. Patrick Hoffmann, EMPA, Thun
- Dr. Renate Moning, VBS A Stab, Ittigen
- Dr. Samuel Huber, Forventis GmbH, Zürich
- Dr. André Koch, Dynamic Phenomena, Cugy (VD)
- Dr. Markus Möckli, RUAG, Emmen
- Dr. Thomas Nussbaumer, RUAG, Thun
- Dr. Hanspeter Kaufmann, RUAG, Thun
- Urs Engeli, General Dynamics European Land Systems, Kreuzlingen

Die Mitglieder der internen wissenschaftlichen Begleitkommission sind:

- Dr. Peter Wellig
- Dr. Quentin Ladetto
- Dr. Alain Jaquier
- Dr. Vincent Lenders
- Dr. Thomas Kuhn
- Dr. Mark Höpflinger

Anhang 4: Gremien

Gremien mit Einsitznahme von armuaisse

- Konferenz der DACH19 Forschungsdirektoren
- NATO/PfP STO20 Board und in diversen Arbeitsgruppen
- NATO Cooperative Cyber Defence Centre of Excellence (CCDCoE)
- EDA21, Research and Technology Directors Board
- Schweizerische Gesellschaft für Technik und Armee (STA)
- Polizeitechnik und Informatik (PTI)
- Koordinationsausschuss-Ressortforschung

19 DACH: Deutschland, Österreich, Schweiz
20 STO: Science and Technology Organisation
21 EDA: European Defence Agency